Knowee
Questions
Features
Study Tools

The functions 𝑔 and ℎ are given by           𝑔⁡(𝑥)=log4⁡(2⁢𝑥)            ℎ⁡(𝑥)=(𝑒𝑥)5𝑒(1/4).(i) Solve 𝑔⁡(𝑥)=3 for values of 𝑥 in the domain of 𝑔.

Question

The functions 𝑔 and ℎ are given by           𝑔⁡(𝑥)=log4⁡(2⁢𝑥)            ℎ⁡(𝑥)=(𝑒𝑥)5𝑒(1/4).(i) Solve 𝑔⁡(𝑥)=3 for values of 𝑥 in the domain of 𝑔.
🧐 Not the exact question you are looking for?Go ask a question

Solution 1

To solve the equation g(x) = 3 for values of x in the domain of g, we first need to understand what the function g(x) is.

The function g(x) is given by g(x) = log4(2x).

The logarithm equation can be rewritten in exponential form to solve for x.

So, if g(x) = 3, we have:

log4(2x) = 3

This can Knowee AI is a powerful AI-powered study tool designed to help you to solve study problem.

Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  

This problem has been solved

Similar Questions

The functions 𝑔 and ℎ are given by           𝑔⁡(𝑥)=log4⁡(2⁢𝑥)            ℎ⁡(𝑥)=(𝑒𝑥)5𝑒(1/4).(i) Solve 𝑔⁡(𝑥)=3 for values of 𝑥 in the domain of 𝑔.

The functions 𝑔 and ℎ are given by          𝑔⁡(𝑥)=log5⁡(4⁢𝑥-2)          ℎ⁡(𝑥)=sin-1⁡(8⁢𝑥).(i) Solve 𝑔⁡(𝑥)=3 for values of 𝑥 in the domain of 𝑔.

​The function 𝑓 is given by 𝑓⁡(𝑥)=sin⁡(2.25⁢𝑥+0.2). The function 𝑔 is given by 𝑔⁡(𝑥)=𝑓⁡(𝑥)+0.5. What are the zeros of 𝑔 on the interval 0≤𝑥≤𝜋 ?

Consider the functions 𝑔 and ℎ given by 𝑔𝑥=4𝑥 and ℎ𝑥=16𝑥+2. In the 𝑥𝑦-plane, what is the 𝑥-coordinate of the point of intersection of the graphs of 𝑔 and ℎ ?

Which function defines (𝑓÷𝑔)⁢(𝑥) ?𝑓⁡(𝑥)=(3.6)𝑥+2𝑔⁡(𝑥)=(3.6)3⁢𝑥+1 A. (𝑓÷𝑔)⁢(𝑥)=(3.6)-2⁢𝑥+1 B. (𝑓÷𝑔)⁢(𝑥)=(3.6)4⁢𝑥+3 C. (𝑓÷𝑔)⁢(𝑥)=(1.8)3⁢𝑥2+7⁢𝑥+2 D.

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.