Knowee
Questions
Features
Study Tools

The value of Γ(7/2)Γ(7/2) is:a.15π−−√/215𝜋/2b.15π−−√15𝜋c.15π−−√/415𝜋/4d.15π−−√/8

Question

The value of Γ(7/2)Γ(7/2) is:

a. 15π2 \frac{15\sqrt{\pi}}{2}

b. 15π 15\sqrt{\pi}

c. 15π4 \frac{15\sqrt{\pi}}{4}

d. 15π8 \frac{15\sqrt{\pi}}{8}

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve the problem, we will follow the outlined steps.

1. Break Down the Problem

We need to compute the value of Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) and identify its equivalent in the options provided.

2. Relevant Concepts

The Gamma function has the property that Γ(n2) \Gamma\left(\frac{n}{2}\right) can be expressed in terms of the factorial for odd integers. Specifically, we have: Γ(n2)=(n1)!π2n/21 \Gamma\left(\frac{n}{2}\right) = \frac{(n-1)! \sqrt{\pi}}{2^{n/2-1}}

For n=7 n = 7 : Γ(72)=(6)!π27/21=720π23.5=720π232=720π82=902π1 \Gamma\left(\frac{7}{2}\right) = \frac{(6)! \sqrt{\pi}}{2^{7/2 - 1}} = \frac{720 \sqrt{\pi}}{2^{3.5}} = \frac{720 \sqrt{\pi}}{2^{3} \cdot \sqrt{2}} = \frac{720 \sqrt{\pi}}{8\sqrt{2}} = \frac{90 \sqrt{2} \sqrt{\pi}}{1}

3. Analysis and Detail

Next, we compute Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) : Γ(72)2=(902π1)2=81002π=16200π \Gamma\left(\frac{7}{2}\right)^2 = \left(90 \frac{\sqrt{2\pi}}{1}\right)^2 = 8100 \cdot 2 \cdot \pi = 16200\pi

Using the property: Γ(n)Γ(n2)=(Γ(n))2Γ(n+1) \Gamma\left(n\right)\Gamma\left(\frac{n}{2}\right) = \frac{(\Gamma(n))^2}{\Gamma(n+1)} Here, for n=7 n=7 : Γ(7)=6!=720 \Gamma(7) = 6! = 720

4. Verify and Summarize

Calculating each option using this value helps us determine the final representations. Since Γ(72)=152π4 \Gamma\left(\frac{7}{2}\right) = \frac{15\sqrt{2\pi}}{4} , we can compute and compare values.

Final Answer

The value of Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) corresponds to the final representation among the options given.

After checking each option, we find that: The correct answer is: 152π4 \text{The correct answer is: } \frac{15\sqrt{2\pi}}{4} This is option c: 1524\frac{15\sqrt{2}}{4}.

This problem has been solved

Similar Questions

The value of Γ(5/2)Γ(7/2)Γ(5/2)Γ(7/2) is:a.45π/1645𝜋/16b.45π/245𝜋/2c.45π/3245𝜋/32d.45π/8

Which of the following will have ‘7’ at the unit place of its square root?*a) 113569b) 31567c) 8281d) 26813

Calculate the absorbed dose received by an 8 g tumour irradiated with 0.25 J of gamma-ray energy.Hint: Don't forget the units!

Which of the following represents a beta particle?A.0−1e−1​ 0 ​ eB.24He24​ HeC.𝛼αD.𝛾γ

The de-Broglie wavelength of a neutron at 927 °C is λ. What will be its wavelength at 27 °C?

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.