Knowee
Questions
Features
Study Tools

The value of Γ(7/2)Γ(7/2) is:a.15π−−√/215𝜋/2b.15π−−√15𝜋c.15π−−√/415𝜋/4d.15π−−√/8

Question

The value of Γ(7/2)Γ(7/2) is:

a. 15π2 \frac{15\sqrt{\pi}}{2}

b. 15π 15\sqrt{\pi}

c. 15π4 \frac{15\sqrt{\pi}}{4}

d. 15π8 \frac{15\sqrt{\pi}}{8}

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve the problem, we will follow the outlined steps.

1. Break Down the Problem

We need to compute the value of Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) and identify its equivalent in the options provided.

2. Relevant Concepts

The Gamma function has the property that Γ(n2) \Gamma\left(\frac{n}{2}\right) can be expressed in terms of the factorial for odd integers. Specifically, we have: Γ(n2)=(n1)!π2n/21 \Gamma\left(\frac{n}{2}\right) = \frac{(n-1)! \sqrt{\pi}}{2^{n/2-1}}

For n=7 n = 7 : Γ(72)=(6)!π27/21=720π23.5=720π232=720π82=902π1 \Gamma\left(\frac{7}{2}\right) = \frac{(6)! \sqrt{\pi}}{2^{7/2 - 1}} = \frac{720 \sqrt{\pi}}{2^{3.5}} = \frac{720 \sqrt{\pi}}{2^{3} \cdot \sqrt{2}} = \frac{720 \sqrt{\pi}}{8\sqrt{2}} = \frac{90 \sqrt{2} \sqrt{\pi}}{1}

3. Analysis and Detail

Next, we compute Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) : Γ(72)2=(902π1)2=81002π=16200π \Gamma\left(\frac{7}{2}\right)^2 = \left(90 \frac{\sqrt{2\pi}}{1}\right)^2 = 8100 \cdot 2 \cdot \pi = 16200\pi

Using the property: Γ(n)Γ(n2)=(Γ(n))2Γ(n+1) \Gamma\left(n\right)\Gamma\left(\frac{n}{2}\right) = \frac{(\Gamma(n))^2}{\Gamma(n+1)} Here, for n=7 n=7 : Γ(7)=6!=720 \Gamma(7) = 6! = 720

4. Verify and Summarize

Calculating each option using this value helps us determine the final representations. Since Γ(72)=152π4 \Gamma\left(\frac{7}{2}\right) = \frac{15\sqrt{2\pi}}{4} , we can compute and compare values.

Final Answer

The value of Γ(72)Γ(72) \Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{7}{2}\right) corresponds to the final representation among the options given.

After checking each option, we find that: The correct answer is: 152π4 \text{The correct answer is: } \frac{15\sqrt{2\pi}}{4} This is option c: 1524\frac{15\sqrt{2}}{4}.

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.