Knowee
Questions
Features
Study Tools

Find the H.C.F of (5^225 - 1), (5^55 - 1)?(5^20 - 1)(5^25 - 1)(5^55 - 1)(5^5 - 1)(5^45 - 1)

Question

Find the H.C.F of:

  1. 5^225 - 1
  2. 5^55 - 1
  3. 5^20 - 1
  4. 5^25 - 1
  5. 5^55 - 1
  6. 5^5 - 1
  7. 5^45 - 1
🧐 Not the exact question you are looking for?Go ask a question

Solution

To find the H.C.F (Highest Common Factor) of the expressions 522515^{225} - 1 and 55515^{55} - 1, we can use the following properties of powers:

Step 1: Break Down the Problem

We first note the general formula for finding the H.C.F of numbers of the form am1a^m - 1 and an1a^n - 1: H.C.F(am1,an1)=aH.C.F(m,n)1 \text{H.C.F}(a^m - 1, a^n - 1) = a^{\text{H.C.F}(m,n)} - 1 For our problem, we need to find: H.C.F(52251,5551) \text{H.C.F}(5^{225} - 1, 5^{55} - 1)

Step 2: Relevant Concepts

We need to compute H.C.F(225,55)\text{H.C.F}(225, 55):

  1. Finding H.C.F of 225 and 55:
    • The prime factorization of 225 is 152=325215^2 = 3^2 \cdot 5^2.
    • The prime factorization of 55 is 5115 \cdot 11.

Using the Euclidean algorithm:

  1. 225=4×55+5225 = 4 \times 55 + 5
  2. 55=11×5+055 = 11 \times 5 + 0

This means H.C.F(225,55)=5\text{H.C.F}(225, 55) = 5.

Step 3: Analysis and Detail

Using the found H.C.F: H.C.F(52251,5551)=5H.C.F(225,55)1=551 \text{H.C.F}(5^{225} - 1, 5^{55} - 1) = 5^{\text{H.C.F}(225, 55)} - 1 = 5^5 - 1

Step 4: Verify and Summarize

Now we calculate 5515^5 - 1: 55=3125551=31251=3124 5^5 = 3125 \quad \Rightarrow \quad 5^5 - 1 = 3125 - 1 = 3124

Final Answer

Thus, the H.C.F of 522515^{225} - 1 and 55515^{55} - 1 is: H.C.F(52251,5551)=3124 \text{H.C.F}(5^{225} - 1, 5^{55} - 1) = 3124

This problem has been solved

Similar Questions

HCF of 5 ^ 2 * 3 ^ 2 and 3 ^ 5 * 5 ^ 3 is a. 5 ^ 3 * 3 ^ 5 b. 5 * 3 ^ 3 c. 5 ^ 3 * 3 ^ 2 d. 5 ^ 2 * 3 ^ 2

What is the eighth term of the geometric pattern whose first term is 5 and whose fourth term is 1/25?a.65b.5^-6c.5d.5^-1

Instructions: Classify the polynomial expression by the number of terms.5r5𝑟Terms:

Which expression is equivalent to (fg)(5)?

Find the unit digit of the expression - (475^32) + (87256^1049) * (37452^83) ?Question 1Answera.3b.2c.4d.1

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.