Knowee
Questions
Features
Study Tools

Calcular el volumen del solido generado al rotar la región limitada por, 14 𝑥2 + 2 Paray = 2y = 9, respecto al eje y, y dibujar su respectiva gráfica.

Question

Calcular el volumen del sólido generado al rotar la región limitada por:

14x2+2y=9 14x^2 + 2y = 9

respecto al eje y, y dibujar su respectiva gráfica.

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to calculate the volume of the solid generated by rotating the region bounded by the equations 14x2+2y=9 14x^2 + 2y = 9 and y=2 y = 2 about the y-axis.

2. Relevant Concepts

To find the volume of the solid obtained by revolving a region around the y-axis, we can use the method of cylindrical shells or the disk/washer method. Here, we can express x x in terms of y y from the equation and then use integration to find the volume.

First, let’s express x x from the given equation 14x2+2y=9 14x^2 + 2y = 9 : 14x2=92yx2=92y14x=92y14 14x^2 = 9 - 2y \quad \Rightarrow \quad x^2 = \frac{9 - 2y}{14} \quad \Rightarrow \quad x = \sqrt{\frac{9 - 2y}{14}}

3. Analysis and Detail

Now, we find the volume using the disk method: V=πy1y2[R(y)]2dy V = \pi \int_{y_1}^{y_2} [R(y)]^2 \, dy where R(y)=x(y) R(y) = x(y) .

From the equations given:

  • y1=2 y_1 = 2
  • y2 y_2 can be found by setting 14x2+2y=9 14x^2 + 2y = 9 to y=0 y = 0 : 14x2=9x2=914y2=9202=92=4.5 14x^2 = 9 \quad \Rightarrow \quad x^2 = \frac{9}{14} \quad \Rightarrow \quad y_2 = \frac{9 - 2 \cdot 0}{2} = \frac{9}{2} = 4.5

Now, we need to integrate from y=2 y = 2 to y=4.5 y = 4.5 : V=π24.5(92y14)2dy V = \pi \int_{2}^{4.5} \left( \sqrt{\frac{9 - 2y}{14}} \right)^2 \, dy V=π24.592y14dy V = \pi \int_{2}^{4.5} \frac{9 - 2y}{14} \, dy V=π1424.5(92y)dy V = \frac{\pi}{14} \int_{2}^{4.5} (9 - 2y) \, dy

Now we calculate the integral: (92y)dy=9yy2 \int (9 - 2y) \, dy = 9y - y^2 Evaluating from 2 2 to 4.5 4.5 : [9(4.5)(4.5)2][9(2)(2)2] \left[ 9(4.5) - (4.5)^2 \right] - \left[ 9(2) - (2)^2 \right] =[40.520.25][184] = \left[ 40.5 - 20.25 \right] - \left[ 18 - 4 \right] =20.2514=6.25 = 20.25 - 14 = 6.25

Now, substituting back into the volume equation: V=π14(6.25)=6.25π14=25π56 V = \frac{\pi}{14} (6.25) = \frac{6.25\pi}{14} = \frac{25\pi}{56}

4. Verify and Summarize

The volume of the solid generated by rotating the described region about the y-axis is 25π56 \frac{25\pi}{56} .

Final Answer

The volume of the solid generated by rotating the region is 25π56 \frac{25\pi}{56} cubic units.

Regarding the graphical representation, you can sketch the curves given by the equations 14x2+2y=9 14x^2 + 2y = 9 and y=2 y = 2 to visualize the region being rotated.

This problem has been solved

Similar Questions

Find the volume of the solid that results when the regionenclosed by y = √x, y = 0, and x = 9 is revolved aboutthe line x = 9

The area bounded by 𝑥=𝑦2−2 and 𝑥=𝑒𝑦  between  𝑦=−1 and 𝑦=1 is revolved about the line 𝑦=1. The Volume integral for the solid generated is

What is the volume, in cubic in, of a cylinder with a height of 8in and a base radius of 2in, to the nearest tenths place?

Halla el lado y los ángulos desconocidos de un triángulo, dos de cuyos lados son a = 10 cm y b = 8 cm, y en el cual el ángulo opuesto al lado a mide 40°.

Find the volume of the given solid.Bounded by the cylinders x2 + y2 = 16r2, y2 + z2 = 16r2

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.