Knowee
Questions
Features
Study Tools

Determine the concatenated transformation matrix for translation by vector [1 1] followed by rotation of 45 degrees in 2D as shown in Figure 2 below.

Question

Determine the concatenated transformation matrix for translation by vector

[11] \begin{bmatrix} 1 \\ 1 \end{bmatrix}
followed by rotation of 45 degrees in 2D as shown in Figure 2 below.

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the concatenated transformation matrix for two transformations:

  1. Translation by the vector [11]\begin{bmatrix} 1 \\ 1 \end{bmatrix}
  2. Rotation by 4545^\circ

2. Relevant Concepts

The transformation matrices in 2D for translation and rotation are defined as follows:

  • Translation Matrix TT for a vector [txty]\begin{bmatrix} t_x \\ t_y \end{bmatrix}: T=[10tx01ty001] T = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}

  • Rotation Matrix RR for an angle θ\theta (in radians): R=[cos(θ)sin(θ)0sin(θ)cos(θ)0001] R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}

For 4545^\circ, we need to convert the angle to radians: θ=45=π4 radians \theta = 45^\circ = \frac{\pi}{4} \text{ radians}

3. Analysis and Detail

First, we will calculate the individual transformation matrices.

1. Translation Matrix for vector [11]\begin{bmatrix} 1 \\ 1 \end{bmatrix}: T=[101011001] T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}

2. Rotation Matrix for 4545^\circ (in radians): cos(π4)=sin(π4)=22 \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} Hence, the rotation matrix RR becomes: R=[2222022220001] R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}

3. Concatenation of Matrices: The concatenated transformation is obtained by multiplying the translation matrix TT by the rotation matrix RR: TR=[101011001]×[2222022220001] TR = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}

4. Verify and Summarize

Carrying out the matrix multiplication: TR=[122+022+10122+022+1010+00+1022+122+10022+122+1000+10+1022+022+10022+022+101] TR = \begin{bmatrix} 1 \cdot \frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \cdot -\frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \cdot 0 + 0 \cdot 0 + 1 \\ 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot -\frac{\sqrt{2}}{2} + 1 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot 0 + 1 \\ 0 \cdot \frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot -\frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \end{bmatrix}

Calculating each entry:

  1. First Row:

    • First column: 22\frac{\sqrt{2}}{2}
    • Second column: 22-\frac{\sqrt{2}}{2}
    • Third column: 11
  2. Second Row:

    • First column: 22\frac{\sqrt{2}}{2}
    • Second column: 22\frac{\sqrt{2}}{2}
    • Third column: 11
  3. Third Row:

    • First column: 00
    • Second column: 00
    • Third column: 11

Thus, the final concatenated transformation matrix TRTR is: TR=[2222122221001] TR = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}

Final Answer

The concatenated transformation matrix is: [2222122221001] \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}

This problem has been solved

Similar Questions

Which of the following is not a rigid motion transformation?A.TranslationB.StretchC.ReflectionD.RotationSUBMITarrow_backPREVIOUS

Write the coordinates of the image of point K(2, 5) after a -90 degrees rotation about the origin

The image of the point (-4, 3) under a rotation of 90° (counterclockwise) centered at the origin is ______.  Answer in (x, y) format.

Let T be the rotation about the origin of angle followed by thereflection in the x-axis. Find T[1 0].(i)

rotation 90 degrees clockwise about the orgin with these coordinates E(-3,-1) D(-2,-1) F (-2,-4)

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.