StudyGPT Just Leveled Up – Say Hello to Knowee! 🚀
Knowee
Questions
Features
Study Tools

Determine the concatenated transformation matrix for translation by vector [1 1] followed by rotation of 45 degrees in 2D as shown in Figure 2 below.

Question

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the concatenated transformation matrix for two transformations:

  1. Translation by the vector [11]\begin{bmatrix} 1 \\ 1 \end{bmatrix}
  2. Rotation by 4545^\circ

2. Relevant Concepts

The transformation matrices in 2D for translation and rotation are defined as follows:

  • Translation Matrix TT for a vector [txty]\begin{bmatrix} t_x \\ t_y \end{bmatrix}: T=[10tx01ty001] T = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}

  • Rotation Matrix RR for an angle θ\theta (in radians): R=[cos(θ)sin(θ)0sin(θ)cos(θ)0001] R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}

For 4545^\circ, we need to convert the angle to radians: θ=45=π4 radians \theta = 45^\circ = \frac{\pi}{4} \text{ radians}

3. Analysis and Detail

First, we will calculate the individual transformation matrices.

1. Translation Matrix for vector [11]\begin{bmatrix} 1 \\ 1 \end{bmatrix}: T=[101011001] T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}

2. Rotation Matrix for 4545^\circ (in radians): cos(π4)=sin(π4)=22 \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} Hence, the rotation matrix RR becomes: R=[2222022220001] R = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}

3. Concatenation of Matrices: The concatenated transformation is obtained by multiplying the translation matrix TT by the rotation matrix RR: TR=[101011001]×[2222022220001] TR = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}

4. Verify and Summarize

Carrying out the matrix multiplication: TR=[122+022+10122+022+1010+00+1022+122+10022+122+1000+10+1022+022+10022+022+101] TR = \begin{bmatrix} 1 \cdot \frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \cdot -\frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \cdot 0 + 0 \cdot 0 + 1 \\ 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot -\frac{\sqrt{2}}{2} + 1 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot 0 + 1 \cdot 0 + 1 \\ 0 \cdot \frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 0 \cdot -\frac{\sqrt{2}}{2} + 0 \cdot \frac{\sqrt{2}}{2} + 1 \cdot 0 & 1 \end{bmatrix}

Calculating each entry:

  1. First Row:

    • First column: 22\frac{\sqrt{2}}{2}
    • Second column: 22-\frac{\sqrt{2}}{2}
    • Third column: 11
  2. Second Row:

    • First column: 22\frac{\sqrt{2}}{2}
    • Second column: 22\frac{\sqrt{2}}{2}
    • Third column: 11
  3. Third Row:

    • First column: 00
    • Second column: 00
    • Third column: 11

Thus, the final concatenated transformation matrix TRTR is: TR=[2222122221001] TR = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}

Final Answer

The concatenated transformation matrix is: [2222122221001] \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.