Knowee
Questions
Features
Study Tools

Lattice constant of a copper unit cell is 3.61 A. Compute the density of atoms per unit length along direction[110] and [111].

Question

Lattice constant of a copper unit cell is 3.61 A. Compute the density of atoms per unit length along direction [110] and [111].

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve this problem, we need to understand the structure of a copper unit cell. Copper has a face-centered cubic (FCC) structure.

  1. For the [110] direction:

In a FCC structure, the [110] direction is along the face diagonal. The face diagonal of a cube is √2 times the edge length. Therefore, the length of the [110] direction in the unit cell is 3.61Å * √2 = 5.10Å.

In the [110] direction, there are two atoms along the face diagonal. Therefore, the number of atoms per unit length along the [110] direction is 2 atoms / 5.10Å = 0.392 atoms/Å.

  1. For the [111] direction:

In a FCC structure, the [111] direction is along the body diagonal. The body diagonal of a cube is √3 times the edge length. Therefore, the length of the [111] direction in the unit cell is 3.61Å * √3 = 6.25Å.

In the [111] direction, there are three atoms along the body diagonal. Therefore, the number of atoms per unit length along the [111] direction is 3 atoms / 6.25Å = 0.48 atoms/Å.

This problem has been solved

Similar Questions

What is the density of copper if 11.8 cm3 of copper has a mass of 105.2 g?7.92 g/cm38.92 g/cm39.92 g/cm310.92 g/cm3None of the above

6A sample of copper has a mass of 50 g and a volume of 5 cm^3. What is its density?A0.1 g/cm^3B10 g/cm^3C45 g/cm^3D55 g/cm^3

11. Magnesium crystallizes in a hexagonal close-packed (HCP) structure with an atomic mass of 24.305 g/mol, density of 1.74 g/cm³, and unit cell volume of 45.2 ų. Determine the number of atoms per unit cell. 12. Lead forms a face-centered cubic (FCC) structure with an atomic mass of 207.2 g/mol. If the density of lead is 11.34 g/cm³, calculate the atomic radius (in nm). 13. Rhodium crystallizes in a face-centered cubic (FCC) structure with an atomic radius of 135 pm. If its unit cell has a volume of 0.071 nm³, determine the density of rhodium in g/cm³. 14. Zinc crystallizes in a hexagonal close-packed (HCP) structure with a density of 7.14 g/cm³ and an atomic radius of 134 pm. Calculate the unit cell volume (in ų) of zinc. 15. Chromium crystallizes in a body-centered cubic (BCC) structure with a density of 7.19 g/cm³ and unit cell edge length of 2.88 Å. Determine the number of atoms per unit cell and verify the structure.

How many copper, Cu atoms are present in a sample of copper with a mass of 662.4 amu? 42096. 64. 6.277   ××  1024 12. 10.

A rectangular block of copper metal weighs 1896 g. The dimensions of the block are 8.4 cm by 5.5 cm by 4.6 cm. From this data, what is the density of copper?

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.