What is the effective annual interest rate on a 9% APR automobile loan that has monthly payments?Question 2
Question
What is the effective annual interest rate on a 9% APR automobile loan that has monthly payments?
Question 2
Solution
To calculate the effective annual interest rate, we need to take into account the compounding period, which in this case is monthly.
Here are the steps:
-
First, divide the annual interest rate (in decimal form, so 9% becomes 0.09) by the number of compounding periods per year. In this case, there are 12 months in a year, so we have 0.09/12 = 0.0075. This is the monthly interest rate.
-
Next, add 1 to this rate: 1 + 0.0075 = 1.0075.
-
Then, raise this sum to the power of the number of compounding periods per year: (1.0075)^12 ≈ 1.093806.
-
Subtract 1 from this result to find the effective annual rate: 1.093806 - 1 = 0.093806 or 9.38%.
So, the effective annual interest rate for a 9% APR automobile loan with monthly payments is approximately 9.38%.
Similar Questions
The effective annual rate (EAR) for a loan with a stated APR of 10% compounded quarterly is closest to:a.9.65%.b.12.50%.c.15.00%d.10.00%.e.10.38%
A car dealership is currently offering interest rates of 12% p.a. compounding quarterly. What is the effective quarterly rate?
Loan $8,000,000.00 payout 10 years interest rate 10% what will be the annual payment?
Choose the correct monthly payment for the following loan. $12,000 loan for 2 years at 4.11% interest rate.
If nominal interest rate is 12% and it is compounded monthly, what is the effective interest rate per interest period?
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.