In a normal distribution, about how many percent of the scores fall between -1SD to +1SD?*1 pointa. 68.26%b. b. 58,75%c. c. 34.13%d. d. 30.86%
Question
In a normal distribution, about how many percent of the scores fall between -1SD to +1SD?
1 point
a. 68.26%
b. 58.75%
c. 34.13%
d. 30.86%
Solution
Break Down the Problem
- Identify the properties of a normal distribution.
- Determine the percentage of data within one standard deviation (SD) from the mean.
Relevant Concepts
- In a normal distribution:
- Approximately 68% of the data falls within one standard deviation from the mean.
Analysis and Detail
- The mean () divides the normal distribution into two halves.
- One standard deviation () from the mean includes:
- From to .
- According to the empirical rule (68-95-99.7 rule):
- About 68.26% of the data falls within one standard deviation from the mean.
Verify and Summarize
- The calculations align with the empirical rule, confirming that the percentage of scores between -1SD to +1SD is approximately 68.26%.
Final Answer
a. 68.26%
Similar Questions
n the normal distribution, approximately what percentage of test scores will fall between 2 and 3 standard deviations above the mean?a.2.1%b.34.1%c.13.6%d.68%
n a normal distribution, what percentage of data falls within one standard deviation of the mean? 25% 50% 68% 95.5%
In a normal distribution, how much of the data falls within one standard deviation?99.7%95%100%68%
Which of these z-scores might represent a very difficult item in the normal distribution?a.+2.33b.−.52c.−2.06d.+.20
For a standard normal distribution, the probability of obtaining a z value between -1.9 to 1.7 isQuestion 3Select one:a.0.9267b.1.254c.0.4267d.1.42670.5000
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.