Knowee
Questions
Features
Study Tools

write a c perform A-B and B-A where A=F A C 9) base 16 and B=( C A D) base 16 using 16's compliment

Question

Write a C perform A-B and B-A where A=F A C 9) base 16 and B=( C A D) base 16 using 16's compliment

🧐 Not the exact question you are looking for?Go ask a question

Solution

To perform the operations AB A - B and BA B - A using 16's complement in C, we will follow these steps:

1. Break Down the Problem

  1. Identify the hexadecimal values of A A and B B .
  2. Convert these hexadecimal values to their decimal equivalents.
  3. Compute AB A - B and BA B - A using 16's complement.
  4. Convert the results back to hexadecimal.

2. Relevant Concepts

  • Hexadecimal Representation: Each digit represents a value from 0 to 15.
  • 16's Complement: For a number x x in base 16, the 16's complement is calculated as 16nx 16^n - x , where n n is the number of digits in the hexadecimal representation.

3. Analysis and Detail

Step 1: Identify the Values

  • A=F A C 916 A = \text{F A C 9}_{16}
  • B=C A D16 B = \text{C A D}_{16}

Step 2: Convert to Decimal

  • Calculate the decimal equivalent of A A : A10=F163+A162+C161+9160=154096+10256+1216+9×1 A_{10} = F \cdot 16^3 + A \cdot 16^2 + C \cdot 16^1 + 9 \cdot 16^0 = 15 \cdot 4096 + 10 \cdot 256 + 12 \cdot 16 + 9 \times 1 A10=61440+2560+192+9=64001 A_{10} = 61440 + 2560 + 192 + 9 = 64001

  • Calculate the decimal equivalent of B B : B10=C162+A161+D160=12256+1016+131 B_{10} = C \cdot 16^2 + A \cdot 16^1 + D \cdot 16^0 = 12 \cdot 256 + 10 \cdot 16 + 13 \cdot 1 B10=3072+160+13=3245 B_{10} = 3072 + 160 + 13 = 3245

Step 3: Perform the Operations

  • Calculate AB A - B :

    To find AB A - B using 16's complement, find the 16's complement of B B :

    1. B B in 4 digits: 0000CAD 0000 C A D
    2. Find the 16's complement of B B :

    163B=1633245=40963245=851 16^3 - B = 16^3 - 3245 = 4096 - 3245 = 851

    Convert 851 851 to hexadecimal: 851÷16=53remainder=3 851 \div 16 = 53 \quad \text{remainder} = 3 53÷16=3remainder=5 53 \div 16 = 3 \quad \text{remainder} = 5 So, B16s complement=0000035316 B_{16's\ complement} = 0000 0353_{16}

    Now perform A+B16s complement A + B_{16's\ complement} : A16=F A C 916=6400110 A_{16} = \text{F A C 9}_{16} = 64001_{10} 64001+851=64852 64001 + 851 = 64852

    Convert 64852 64852 to hexadecimal: 64852÷16=4053remainder=4 64852 \div 16 = 4053 \quad \text{remainder} = 4 4053÷16=253remainder=5 4053 \div 16 = 253 \quad \text{remainder} = 5 253÷16=15remainder=D 253 \div 16 = 15 \quad \text{remainder} = D 15÷16=0remainder=F 15 \div 16 = 0 \quad \text{remainder} = F

    So AB=FD5416 A - B = F D 5 4_{16} .

  • Calculate BA B - A :

    To find BA B - A , calculate the 16's complement of A A :

    1. A A in 4 digits: 0000FAC9 0000 F A C 9
    2. Calculate the 16's complement of A A :

    164A=6553664001=1535 16^4 - A = 65536 - 64001 = 1535

    Convert 1535 1535 to hexadecimal: 1535÷16=95remainder=15 1535 \div 16 = 95 \quad \text{remainder} = 15 95÷16=5remainder=15 95 \div 16 = 5 \quad \text{remainder} = 15 5÷16=0remainder=5 5 \div 16 = 0 \quad \text{remainder} = 5

    So A16s complement=0005FF16 A_{16's\ complement} = 0005 FF_{16}

    Now perform B+A16s complement B + A_{16's\ complement} : B16=C A D16=324510 B_{16} = \text{C A D}_{16} = 3245_{10} 3245+1535=4780 3245 + 1535 = 4780

    Convert 4780 4780 to hexadecimal: 4780÷16=298remainder=12 4780 \div 16 = 298 \quad \text{remainder} = 12 298÷16=18remainder=10 298 \div 16 = 18 \quad \text{remainder} = 10 18÷16=1remainder=2 18 \div 16 = 1 \quad \text{remainder} = 2 1÷16=0remainder=1 1 \div 16 = 0 \quad \text{remainder} = 1

    So BA=12AC416 B - A = 12 A C 4_{16} .

4. Verify and Summarize

  • AB=FD5416 A - B = F D 5 4_{16}
  • BA=12AC416 B - A = 12 A C 4_{16}

Final Answer

  1. AB=FD5416 A - B = F D 5 4_{16}
  2. BA=12AC416 B - A = 12 A C 4_{16}

This problem has been solved

Similar Questions

Convert 6B from base 16 to base 2Select one:a.1001011b.1101000c.1101011d.1111011

Determine the base of the numbers in each case for the following operations to be correct: (a) 14/2 = 5

If a2 − b2 = 36 and a + b = 4, then (a − b) 2 =__________.(a) 36 (b) 9(c) 81 (d) 144

Fill in the blanks from the smallest number to the greatest number.16 is a common multiple of a few numbers smaller than 10.They are 1, ,  and .Submit Answer

Which two numbers below have a least common multiple of 48? A. 4 and 16 B. 8 and 12 C. 8 and 24 D. 3 and 16

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.