In how many ways can 576 be expressed as product of two distinct factors?109128
Question
In how many ways can 576 be expressed as product of two distinct factors?
109128
Solution
To find out how many ways 576 can be expressed as a product of two distinct factors, we first need to find all the factors of 576.
Step 1: Find the factors of 576 The factors of 576 are: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576.
Step 2: Pair the factors Now, we pair these factors in such a way that the product of each pair is 576. The pairs are: (1, 576), (2, 288), (3, 192), (4, 144), (6, 96), (8, 72), (9, 64), (12, 48), (16, 36), (18, 32), (24, 24).
Step 3: Count the pairs We have 11 pairs in total. However, the pair (24, 24) is not distinct, so we don't count it.
So, 576 can be expressed as a product of two distinct factors in 10 ways.
Similar Questions
6 is a factor of 12066 and 49320. Is 6 a factor of 49320 + 12066 and 49320 - 12066?a.Nob.Yesc.Cannot be Determined
Product of two consecutive natural numbers is 56. Which of the given options can be understood from the given statement?
The product of a pair of 2-digit positive integers is 630. How many such pairs arethere?(A) 2 (B) 3 (C) 4 (D) 5 (E) 6
The following numbers are common factors of 28 and 56 except?Group of answer choices728814
Write the prime factors of 72 in index notation.A23×32B23×33C24×33D21×32E23×3×11
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.