Knowee
Questions
Features
Study Tools

The points (3, −2, −1), (−1, 1, 2), (2, 3, −4) and (4, 5, λ) are coplanar when λ=

Question

The points

(3, −2, −1),
(−1, 1, 2),
(2, 3, −4) and
(4, 5, λ) are coplanar when λ=

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

To determine the value of λ \lambda that makes the points coplanar, we can use the property that the volume of the parallelepiped formed by the vectors to these points should be zero. This can be accomplished by evaluating the determinant of a matrix formed by these points.

2. Relevant Concepts

For points A(x1,y1,z1) A(x_1, y_1, z_1) , B(x2,y2,z2) B(x_2, y_2, z_2) , C(x3,y3,z3) C(x_3, y_3, z_3) , and D(x4,y4,z4) D(x_4, y_4, z_4) , the points are coplanar if the determinant of the matrix formed by their coordinates (with an additional row of ones) equals zero.

The matrix is defined as:

Det=x1y1z11x2y2z21x3y3z31x4y4z41 \text{Det} = \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}

For our specific points, we have:

32111121234145λ1=0 \begin{vmatrix} 3 & -2 & -1 & 1 \\ -1 & 1 & 2 & 1 \\ 2 & 3 & -4 & 1 \\ 4 & 5 & \lambda & 1 \end{vmatrix} = 0

3. Analysis and Detail

We will compute the determinant step by step.

Det=32111121234145λ1 \text{Det} = \begin{vmatrix} 3 & -2 & -1 & 1 \\ -1 & 1 & 2 & 1 \\ 2 & 3 & -4 & 1 \\ 4 & 5 & \lambda & 1 \end{vmatrix}

Using the cofactor expansion along the last row:

=42111213415311121241+λ3211112311321112234 = 4 \cdot \begin{vmatrix} -2 & -1 & 1 \\ 1 & 2 & 1 \\ 3 & -4 & 1 \end{vmatrix} - 5 \cdot \begin{vmatrix} 3 & -1 & 1 \\ -1 & 2 & 1 \\ 2 & -4 & 1 \end{vmatrix} + \lambda \cdot \begin{vmatrix} 3 & -2 & 1 \\ -1 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & -2 & -1 \\ -1 & 1 & 2 \\ 2 & 3 & -4 \end{vmatrix}

Calculating each of the smaller determinants leads us to the following equations. For brevity, let's compute these values one by one:

  1. Calculate the first determinant for the factor 44:

211121341=2(2(4))(1)(13)+1(8+3)=2(6)+25=12+25=15 \begin{vmatrix} -2 & -1 & 1 \\ 1 & 2 & 1 \\ 3 & -4 & 1 \end{vmatrix} = -2(2 - (-4)) - (-1)(1 - 3) + 1(-8 + 3) = -2(6) + 2 - 5 = -12 + 2 - 5 = -15

  1. Calculate the second determinant for the factor 5-5:

311121241=3(24)(1)(14)+1(4+2)=3(2)1(5)+1(6)=6+5+6=5 \begin{vmatrix} 3 & -1 & 1 \\ -1 & 2 & 1 \\ 2 & -4 & 1 \end{vmatrix} = 3(2 - 4) - (-1)(-1 - 4) + 1(4 + 2) = 3(-2) - 1(-5) + 1(6) = -6 + 5 + 6 = 5

  1. Calculate the third determinant for the factor λ\lambda:

321111231=3(13)(2)(12)+1(3+2)=3(2)2(3)+1(1)=6+61=1 \begin{vmatrix} 3 & -2 & 1 \\ -1 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix} = 3(1 - 3) - (-2)(-1 - 2) + 1(-3 + 2) = 3(-2) - 2(-3) + 1(-1) = -6 + 6 - 1 = -1

  1. Finally, calculate the fourth determinant for the factor 1-1:

321112234=3(1423)(2)(1422)+(1)(1322) \begin{vmatrix} 3 & -2 & -1 \\ -1 & 1 & 2 \\ 2 & 3 & -4 \end{vmatrix} = 3(1 \cdot -4 - 2 \cdot 3) - (-2)(-1 \cdot -4 - 2 \cdot 2) + (-1)(-1 \cdot 3 - 2 \cdot 2)

Calculating:

=3(46)+2(44)1(34)=3(10)16+7=3016+7=39 = 3(-4 - 6) + 2(-4 - 4) - 1(-3 - 4) = 3(-10) - 16 + 7 = -30 - 16 + 7 = -39

4. Verify and Summarize

Putting it all together:

4(15)5(5)+λ(1)(39)=06025λ+39=046λ=0λ=46 4(-15) - 5(5) + \lambda(-1) - (-39) = 0 \\ -60 - 25 - \lambda + 39 = 0 \\ -46 - \lambda = 0 \\ \lambda = -46

Final Answer

The value of λ \lambda for the points to be coplanar is λ=46 \lambda = -46 .

This problem has been solved

Similar Questions

Calculate the value of a for the points (1, 0, 1), (0, 1, 2), (-1, 2, a) and (7, 2, 1) so that theyare coplanar.

Four points are always coplanar if they:Check all that apply.A.lie on the same line.B.lie on different planes.C.lie on different lines.D.lie in the same plane.

The lines x−21=y−31=z−4−k and x−1k=y−42=z−51 are coplanar ifk=3 or -2k=0 or -1k=1 or -1k=0 or -3

Ques 1 The point on X-axis which is equidistant from the points (2, -2) and (-4,2) is(a) (1,0) (b) (2,0) (c) (0,2) (d) (-1,0)

If three points are collinear, they are also coplanar.A.TrueB.FalseSUBMITarrow_backPREVIOUS

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.