Knowee
Questions
Features
Study Tools

Find the number of zeros at the end of the 120! + 230! + 40! + 450! + 60! + 670!1 point28201669

Question

Find the number of zeros at the end of the following expression:

120! + 230! + 40! + 450! + 60! + 670!
1 point 28201669

🧐 Not the exact question you are looking for?Go ask a question

Solution

To find the number of zeros at the end of the expression 120!+230!+40!+450!+60!+670! 120! + 230! + 40! + 450! + 60! + 670! , we need to determine the number of trailing zeros in each factorial individually and then identify the smallest count since the addition of these large numbers will not change the number of trailing zeros.

Step 1: Break Down the Problem

  1. Calculate the number of trailing zeros in each factorial: 120! 120! , 230! 230! , 40! 40! , 450! 450! , 60! 60! , and 670! 670! .
  2. Identify the minimum number of trailing zeros among all calculated values.

Step 2: Relevant Concepts

The number of trailing zeros in n! n! can be found using the formula: Z(n)=n5+n25+n125+ Z(n) = \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{25} \right\rfloor + \left\lfloor \frac{n}{125} \right\rfloor + \ldots

Step 3: Calculate the Number of Trailing Zeros

  1. For 120! 120! : Z(120)=1205+12025=24+4=28 Z(120) = \left\lfloor \frac{120}{5} \right\rfloor + \left\lfloor \frac{120}{25} \right\rfloor = 24 + 4 = 28

  2. For 230! 230! : Z(230)=2305+23025+230125=46+9+1=56 Z(230) = \left\lfloor \frac{230}{5} \right\rfloor + \left\lfloor \frac{230}{25} \right\rfloor + \left\lfloor \frac{230}{125} \right\rfloor = 46 + 9 + 1 = 56

  3. For 40! 40! : Z(40)=405+4025=8+1=9 Z(40) = \left\lfloor \frac{40}{5} \right\rfloor + \left\lfloor \frac{40}{25} \right\rfloor = 8 + 1 = 9

  4. For 450! 450! : Z(450)=4505+45025+450125=90+18+3=111 Z(450) = \left\lfloor \frac{450}{5} \right\rfloor + \left\lfloor \frac{450}{25} \right\rfloor + \left\lfloor \frac{450}{125} \right\rfloor = 90 + 18 + 3 = 111

  5. For 60! 60! : Z(60)=605+6025=12+2=14 Z(60) = \left\lfloor \frac{60}{5} \right\rfloor + \left\lfloor \frac{60}{25} \right\rfloor = 12 + 2 = 14

  6. For 670! 670! : Z(670)=6705+67025+670125=134+26+5=165 Z(670) = \left\lfloor \frac{670}{5} \right\rfloor + \left\lfloor \frac{670}{25} \right\rfloor + \left\lfloor \frac{670}{125} \right\rfloor = 134 + 26 + 5 = 165

Step 4: Verify and Summarize

The calculated trailing zeros are:

  • Z(120)=28 Z(120) = 28
  • Z(230)=56 Z(230) = 56
  • Z(40)=9 Z(40) = 9
  • Z(450)=111 Z(450) = 111
  • Z(60)=14 Z(60) = 14
  • Z(670)=165 Z(670) = 165

The minimum value among all calculated trailing zeros is 9 9 (from 40! 40! ).

Final Answer

The number of zeros at the end of 120!+230!+40!+450!+60!+670! 120! + 230! + 40! + 450! + 60! + 670! is 9 \boxed{9} .

This problem has been solved

Similar Questions

Find the number of zeros at the end of the 120! + 230! + 40! + 450! + 60! + 670!

A person starts multiplying consecutive positive integers from 120. How many numbers should he multiply before he will have a result of 4 zeroes?*1 point610115

How many numbers are there between 300 and 700 that are divisible by 4?1 point99100101102

What will be the number of zeroes at the end of the product of 1, 3, 5, 7 ….. 99?*1 point10111Nill

Find the number of zeros in 101! A] 27 B] 21 C] 12 D] 24 Options : A B C D

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.