A sum of money amounts to ` 2025 at 12.5% p.a. after 2 years, compounded annually. Findthe sum of money.
Question
A sum of money amounts to ` 2025 at 12.5% p.a. after 2 years, compounded annually. Find the sum of money.
Solution
To find the sum of money, we need to use the formula for compound interest which is:
A = P(1 + r/n)^(nt)
Where: A = the amount of money accumulated after n years, including interest. P = the principal amount (the initial amount of money) r = annual interest rate (in decimal) n = number of times that interest is compounded per year t = time the money is invested for in years
Given in the problem: A = 2025 r = 12.5% = 0.125 (in decimal) n = 1 (since it is compounded annually) t = 2 years
We can substitute these values into the formula and solve for P:
2025 = P(1 + 0.125/1)^(1*2) 2025 = P(1.125)^2 2025 = P(1.265625)
To find P, we divide both sides by 1.265625:
P = 2025 / 1.265625 P = 1600
So, the sum of money is ` 1600.
Similar Questions
Rs. 2100 is lent at compound interest of 5% per annum for 2 years. Find the amount after two years.
What will be the change in a sum of money compounded annually at 20% for 3.5 years? 51%76%90%68%
The maturity value of a certain sum after two years at 20% p.a. interest compounded annually isRs. 14,400/-. Find the principal amount
Find the amount of Rs. 50000 after 2 years, compounded annually; the rate of interest being 8% p.a during the first yearand 9% p.a during the second year
A man expects to receive P125,000 in 8 years. How much must he invest now considering an interest rate of 12% compounded quarterly.
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.