Knowee
Questions
Features
Study Tools

Select all the ordered pairs that are solutions of the equation.(-7, 1)(-1, 7)(0, 5)(2, 3)(3, 2)(5, 0)

Question

Select all the ordered pairs that are solutions of the equation.

(-7, 1)
(-1, 7)
(0, 5)
(2, 3)
(3, 2)
(5, 0)

🧐 Not the exact question you are looking for?Go ask a question

Solution

To determine which ordered pairs are solutions of the equation, we need to know the equation itself. Since the equation is not provided, let's assume a generic linear equation of the form y=mx+b y = mx + b . We will test each ordered pair to see if it satisfies this equation.

  1. (-7, 1):

    • Substitute x=7 x = -7 and y=1 y = 1 into the equation y=mx+b y = mx + b .
    • 1=m(7)+b 1 = m(-7) + b .
  2. (-1, 7):

    • Substitute x=1 x = -1 and y=7 y = 7 into the equation y=mx+b y = mx + b .
    • 7=m(1)+b 7 = m(-1) + b .
  3. (0, 5):

    • Substitute x=0 x = 0 and y=5 y = 5 into the equation y=mx+b y = mx + b .
    • 5=m(0)+b 5 = m(0) + b .
    • 5=b 5 = b .
  4. (2, 3):

    • Substitute x=2 x = 2 and y=3 y = 3 into the equation y=mx+b y = mx + b .
    • 3=m(2)+b 3 = m(2) + b .
  5. (3, 2):

    • Substitute x=3 x = 3 and y=2 y = 2 into the equation y=mx+b y = mx + b .
    • 2=m(3)+b 2 = m(3) + b .
  6. (5, 0):

    • Substitute x=5 x = 5 and y=0 y = 0 into the equation y=mx+b y = mx + b .
    • 0=m(5)+b 0 = m(5) + b .

Since we do not have the specific equation, we cannot definitively determine which pairs are solutions. However, if we assume the equation is y=x+6 y = -x + 6 (as an example), we can test each pair:

  1. (-7, 1):

    • 1=(7)+6 1 = -(-7) + 6
    • 1=7+6 1 = 7 + 6
    • 113 1 \neq 13 (Not a solution)
  2. (-1, 7):

    • 7=(1)+6 7 = -(-1) + 6
    • 7=1+6 7 = 1 + 6
    • 7=7 7 = 7 (Solution)
  3. (0, 5):

    • 5=(0)+6 5 = -(0) + 6
    • 5=6 5 = 6
    • 56 5 \neq 6 (Not a solution)
  4. (2, 3):

    • 3=(2)+6 3 = -(2) + 6
    • 3=2+6 3 = -2 + 6
    • 3=4 3 = 4 (Not a solution)
  5. (3, 2):

    • 2=(3)+6 2 = -(3) + 6
    • 2=3+6 2 = -3 + 6
    • 2=3 2 = 3 (Not a solution)
  6. (5, 0):

    • 0=(5)+6 0 = -(5) + 6
    • 0=5+6 0 = -5 + 6
    • 0=1 0 = 1 (Not a solution)

Therefore, based on the assumed equation y=x+6 y = -x + 6 , the only solution is (-1, 7).

To accurately determine the solutions, the specific equation must be provided.

This problem has been solved

Similar Questions

Which ordered pair represents the solution to the system of equations?{2x−7y=0x−6y=-5{2𝑥-7𝑦=0𝑥-6𝑦=-5 (1, 1) (2, 7) (7, 2) (-11, -1)

Choose the pair of numbers that is not a solution to the given equation.y = 5 - 2x(0, 3)(2, 1)(1, 3)

Which ordered pairs are solutions for y = 3x – 5? Choose all that apply. A) (0, -5) B) (1, -2) C) (5, 20) D) (-2, -11) E) (3, 0)

What is the equation of a line through (-1, 4) and (-2, 7)?Question 27Select one:a.y = 3x + 1b.y = -3x + 1c.y = -3x + 7d.y = 3x + 7e.None of these

{x−y=72x+y=-1{𝑥-𝑦=72𝑥+𝑦=-1Which is the solution to the system of equations shown? x=-1,y=-7𝑥=-1,𝑦=-7 x=-2,y=5𝑥=-2,𝑦=5 x=-5,y=2𝑥=-5,𝑦=2 x=2,y=-5𝑥=2,𝑦=-5

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.