Knowee
Questions
Features
Study Tools

Let T: R2 --> R2 be the linear transformation given by T(x,y)=(2x+y, x+y). Find T -1(x,y).

Question

Let T: R2 --> R2 be the linear transformation given by T(x,y)=(2x+y, x+y). Find T -1(x,y).

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the inverse transformation T1(x,y) T^{-1}(x, y) for the given linear transformation T(x,y)=(2x+y,x+y) T(x, y) = (2x + y, x + y) .

2. Relevant Concepts

The function T T maps R2 \mathbb{R}^2 to R2 \mathbb{R}^2 and is defined as: T(x,y)=(2111)(xy) T(x,y) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} To find the inverse T1 T^{-1} , we first need to find the inverse of the transformation matrix.

3. Analysis and Detail

  1. Find the transformation matrix A A : A=(2111) A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}

  2. Calculate the determinant of A A : det(A)=(2)(1)(1)(1)=21=1 \text{det}(A) = (2)(1) - (1)(1) = 2 - 1 = 1

  3. Find the inverse of matrix A A using the formula for the inverse of a 2×2 2 \times 2 matrix: A1=1det(A)(dbca)=(1112) A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}

  4. Use the inverse matrix to find T1(x,y) T^{-1}(x, y) : We have: T1(x,y)=A1(xy)=(1112)(xy) T^{-1}(x, y) = A^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} This results in: T1(x,y)=(xyx+2y) T^{-1}(x, y) = \begin{pmatrix} x - y \\ -x + 2y \end{pmatrix}

4. Verify and Summarize

Verifying, if we apply T T on T1(x,y) T^{-1}(x, y) : T(T1(x,y))=T(xy,x+2y)=(2(xy)+(x+2y)(xy)+(x+2y))=(x+yy) T(T^{-1}(x, y)) = T(x - y, -x + 2y) = \begin{pmatrix} 2(x - y) + (-x + 2y) \\ (x - y) + (-x + 2y) \end{pmatrix} = \begin{pmatrix} x + y \\ y \end{pmatrix} This confirms that we have derived the correct inverse transformation.

Final Answer

T1(x,y)=(xy,x+2y) T^{-1}(x, y) = (x - y, -x + 2y)

This problem has been solved

Similar Questions

Find a linear transformation 7: R2 R2 such that 7(1,-2) = (1, 1) and T(0, 1) = (2,3), where B = {(1,-2), (0, 1)) is a basis of IR2.

How is the graph of y=2x−1𝑦=2𝑥−1 transformed from y=2x𝑦=2𝑥?Horizontal shift Answer 1 Question 3 Answer 2 Question 3 unit(s).

Determine N (T ) and R(T ) for each of the following linear transformations:a) T : P2 → P3, T (f )(x) = xf (x)b) T : P4 → P3, T (f )(x) = f ′(x).

Does there exist a linear transformation T : R2 → R4 such that Range(T ) ={(x1, x2, x3, x4) : x1 + x2 + x3 + x4 = 0

33. Let T: P₂→ P₂ be defined by T(ax² + bx + c) = ax^2 + (a-2b)x + b a. Determine whether p(x) = 2x^2 - 4x +6 is in the range of T. b. Find a basis for R(T).

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.