Knowee
Questions
Features
Study Tools

The work done on a particle enacted to move from (0,0)(0,0) to (2,4)(2,4) along the parabola y=x2𝑦=𝑥2 by the force F––(t)=x2i–+y2j–𝐹_(𝑡)=𝑥2𝑖_+𝑦2𝑗_ is given by

Question

The work done on a particle enacted to move from (0,0)(0,0) to (2,4)(2,4) along the parabola y=x2𝑦=𝑥2 by the force F––(t)=x2i–+y2j–𝐹_(𝑡)=𝑥2𝑖_+𝑦2𝑗_ is given by
🧐 Not the exact question you are looking for?Go ask a question

Solution 1

The work done by a force on a particle moving along a path is given by the line integral of the force along the path. In this case, the force is F(t) = x^2 i + y^2 j and the path is along the parabola y = x^2 from (0,0) to (2,4).

Step 1: Parameterize the path We can parameterize the path along the Knowee AI is a powerful AI-powered study tool designed to help you to solve study problem.

Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  

This problem has been solved

Similar Questions

The work done on a particle enacted to move from (0,0)(0,0) to (2,4)(2,4) along the parabola y=x2𝑦=𝑥2 by the force F––(t)=x2i–+y2j–𝐹_(𝑡)=𝑥2𝑖_+𝑦2𝑗_ is given by

The domain of the vector function F––(t)=t−3−−−−√i–+ln(10−2t−−−−−−√)–j+1t−3√k––𝐹_(𝑡)=𝑡−3𝑖_+𝑙𝑛(10−2𝑡)_𝑗+1𝑡−3𝑘_ is given by the interval

Does the vector function F––(t)=ti–+2tcostj–+2tsintk––𝐹_(𝑡)=𝑡𝑖_+2𝑡𝑐𝑜𝑠𝑡𝑗_+2𝑡𝑠𝑖𝑛𝑡𝑘_ lie on a paraboloid?

Give a vector parametric equation for the line through the point (2,4,−5)(2,4,−5) that is parallel to the line ⟨−5−5𝑡,2+𝑡,5𝑡⟩

Find the signed area between the 𝑥-axis and the graph of 𝑦=𝑥2−4 over the interval [2,4]

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.