If the perimeter of a sector of a circle of radius 6.5 cm is 29 cm, then its area is _________
Question
If the perimeter of a sector of a circle of radius 6.5 cm is 29 cm, then its area is _________
Solution
To find the area of a sector of a circle, we first need to find the angle of the sector.
Step 1: Find the circumference of the entire circle. The formula for the circumference of a circle is 2πr, where r is the radius of the circle.
Circumference = 2πr = 2π(6.5 cm) = 13π cm
Step 2: Find the length of the arc of the sector. The perimeter of the sector is the sum of the radius, radius, and the arc length. So, the arc length is the perimeter minus twice the radius.
Arc length = Perimeter - 2r = 29 cm - 2(6.5 cm) = 16 cm
Step 3: Find the angle of the sector. The ratio of the arc length to the circumference of the circle is equal to the ratio of the angle of the sector to 360 degrees.
Angle = (Arc length / Circumference) * 360 = (16 cm / 13π cm) * 360 ≈ 140.74 degrees
Step 4: Find the area of the sector. The ratio of the angle of the sector to 360 degrees is equal to the ratio of the area of the sector to the area of the circle. The area of a circle is πr².
Area of sector = (Angle / 360) * πr² = (140.74 / 360) * π(6.5 cm)² ≈ 33.18 cm²
So, the area of the sector is approximately 33.18 cm².
Similar Questions
A circle and a rectangle have the same perimeter. The sides of the rectangle are 18 cm and 26cm. What is the area of the circle
The circle shown with radius has a sector with a central angle of . What is the area of the sector?
Area of a rhombus is 24 . If one of its diagonals is 6 cm then its perimeter is ________ cm.
An arc of a circle subtends an angle 36° at a point on its circumference. What is the area (in cm2 ) of the sector if the arc of its length is 3∗𝜋5 𝑐𝑚?
The figure above shows a quarter circle of radius 28 cm. Find the area of the figure. (Take ? = )
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.