Knowee
Questions
Features
Study Tools

The tetrahedron can be constructed from the repetitive folding of _____.A.trianglesB.cubesC.parallelogramsD.squares

Question

The tetrahedron can be constructed from the repetitive folding of _____.

A. triangles
B. cubes
C. parallelograms
D. squares

🧐 Not the exact question you are looking for?Go ask a question

Solution

To determine which shape can be repetitively folded to construct a tetrahedron, we need to analyze the geometric properties of each option:

  1. Triangles: A tetrahedron is a three-dimensional shape made up of four triangular faces. This aligns well with the idea of folding triangles to create a tetrahedron.

  2. Cubes: Folding a cube would result in a complex structure that does not correspond to a tetrahedron. Cubes are six-faced structures and cannot be folded into a tetrahedron.

  3. Parallelograms: While parallelograms can be used in various geometric constructions, they do not naturally lead to the creation of a tetrahedron when folded.

  4. Squares: Similar to cubes, squares are two-dimensional shapes that do not directly relate to the formation of a tetrahedron through folding.

Conclusion

Based on the analysis, the correct answer is: A. triangles

Triangles are the fundamental shape from which a tetrahedron can be constructed through repetitive folding.

This problem has been solved

Similar Questions

The dodecahedron can be constructed from the repetitive folding of _____.A.squaresB.equilateral trianglesC.regular pentagonsD.triangles

Which types of polygons are the faces of a tetrahedron?A.SquaresB.Regular hexagonsC.Equilateral trianglesD.Regular pentagons

What object would you create if you did a parallel cross-section of a square pyramid?Question 12Select one:a.Cubeb.Trianglec.Rectangled.Square

What is a 20-sided 3D shape called?Pentagonal trapezohedronPentadecagonIcosahedronCube

Which of the following Platonic solids is also a cube?A.TetrahedronB.IcosahedronC.None of theseD.DodecahedronE.HexahedronF.Octahedron

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.