Which of the following has a positive value?tan(200°)sin(200°)sec(200°)cos(200°)
Question
Which of the following has a positive value?
tan(200°)
sin(200°)
sec(200°)
cos(200°)
Solution
To determine which of the following has a positive value, we need to evaluate each trigonometric function separately.
-
tan(200°): To find the value of tan(200°), we can use the identity tan(x) = sin(x) / cos(x). Therefore, tan(200°) = sin(200°) / cos(200°).
-
sin(200°): To find the value of sin(200°), we can use the unit circle or a calculator. The sine function is positive in the second and third quadrants. Since 200° is in the third quadrant, sin(200°) is positive.
-
sec(200°): To find the value of sec(200°), we can use the identity sec(x) = 1 / cos(x). Therefore, sec(200°) = 1 / cos(200°).
-
cos(200°): To find the value of cos(200°), we can use the unit circle or a calculator. The cosine function is negative in the second and third quadrants. Since 200° is in the third quadrant, cos(200°) is negative.
Now, let's evaluate each expression:
tan(200°) = sin(200°) / cos(200°) = positive / negative = negative
sin(200°) = positive
sec(200°) = 1 / cos(200°) = 1 / negative = negative
cos(200°) = negative
From the given options, only sin(200°) has a positive value.
Similar Questions
Use the ALEKS calculator to evaluate each expression.Round your answers to the nearest hundredth.tan10° = cos81° = sin55° =
Use the information given about the angle , 0 2, to find the exact value of the indicated trigonometric function.
sin12∘sin24∘sin48∘sin84∘=cos20∘cos40∘cos60∘cos80∘sin20∘sin40∘sin60∘sin80∘315None of these
We use the value 𝐴 to graph cosecant, secant, tangent, and cotangent.Group of answer choicesTrueFalse
Which of the following is not equal to the other values?sin31.7°sin(-328.3°)sin148.3°sin211.7°
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.