Knowee
Questions
Features
Study Tools

If a random variable X is binomially distributed with parameters n=5, p=0.4, then the probability of three successes is:a.0.18b.0.23c.0.36d.0.68

Question

If a random variable X is binomially distributed with parameters n=5, p=0.4, then the probability of three successes is:

a. 0.18
b. 0.23
c. 0.36
d. 0.68

🧐 Not the exact question you are looking for?Go ask a question

Solution

The probability of getting exactly k successes in n trials is given by the formula for the Binomial distribution:

P(X=k) = C(n, k) * (p^k) * ((1-p)^(n-k))

where:

  • C(n, k) is the number of combinations of n items taken k at a time,
  • p is the probability of success on a single trial,
  • n is the number of trials,
  • k is the number of successes we want.

In this case, we have n=5 (the number of trials), p=0.4 (the probability of success on a single trial), and we want to find the probability of k=3 successes.

So, we have:

P(X=3) = C(5, 3) * (0.4^3) * ((1-0.4)^(5-3))

Calculating the combinations, C(5, 3) = 5! / [3!(5-3)!] = 10.

So,

P(X=3) = 10 * (0.4^3) * (0.6^2) = 10 * 0.064 * 0.36 = 0.2304

So, the probability of getting exactly 3 successes is approximately 0.23. Therefore, the correct answer is b. 0.23.

This problem has been solved

Similar Questions

Consider a binomial experiment with 5 trials and p=0.4.a. Compute the probability of 1 success, f(1)

f x is a binomial random variable with n=10 and p=0.8, what is the probability that x is equal to 4?Select one:a..0055.b..0063.c..124.d..232.e..994.

What is the probability of rolling getting exactly 3 heads when tossing a coin 5 times?

if the sum of the mean and variance of binomial distribution of 5trails is 4.8 ,find the corresponding pmf of the distribution

Suppose X follows a binomial distribution with n=30 trials and p=0.5 probability of success . Find μₓ, the mean of X. Do not round your answer.2 points

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.