Knowee
Questions
Features
Study Tools

2. Fie functiile f, g : R −→ R, definite prin f (x) = x − 2, g(x) = 2 − x, ∀x ∈ R(a) Sa se calculeze (f ◦ g)(1)(b) Sa se calculeze sum100∑k=1( (f ◦ g)(k) )2

Question

2. Fie functiile f, g : R −→ R, definite prin

f (x) = x − 2,
g(x) = 2 − x,
∀x ∈ R

(a) Sa se calculeze (f ◦ g)(1)
(b) Sa se calculeze sum100∑k=1( (f ◦ g)(k) )^2

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to solve two parts:

  1. Calculate (fg)(1)(f \circ g)(1).
  2. Calculate the sum k=1100(fg)(k)2\sum_{k=1}^{100} (f \circ g)(k)^2.

2. Relevant Concepts

  • The composition of functions fgf \circ g means we will apply gg first, and then apply ff to the result.
  • The given functions are:
    • f(x)=x2f(x) = x - 2
    • g(x)=2xg(x) = 2 - x

3. Analysis and Detail

(a) Calculate (fg)(1)(f \circ g)(1):

  1. Compute g(1)g(1): g(1)=21=1 g(1) = 2 - 1 = 1
  2. Now compute f(g(1))=f(1)f(g(1)) = f(1): f(1)=12=1 f(1) = 1 - 2 = -1 Thus, (fg)(1)=1(f \circ g)(1) = -1.

(b) Calculate k=1100(fg)(k)2\sum_{k=1}^{100} (f \circ g)(k)^2:

  1. First, find (fg)(k)(f \circ g)(k):

    • Compute g(k)g(k): g(k)=2k g(k) = 2 - k
    • Now compute f(g(k))=f(2k)f(g(k)) = f(2 - k): f(2k)=(2k)2=k f(2 - k) = (2 - k) - 2 = -k Therefore, (fg)(k)=k(f \circ g)(k) = -k.
  2. Now compute the sum: k=1100(fg)(k)2=k=1100(k)2=k=1100k2 \sum_{k=1}^{100} (f \circ g)(k)^2 = \sum_{k=1}^{100} (-k)^2 = \sum_{k=1}^{100} k^2 The formula for the sum of the squares of the first nn natural numbers is: k=1nk2=n(n+1)(2n+1)6 \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} For n=100n = 100: k=1100k2=100(100+1)(2×100+1)6=100×101×2016 \sum_{k=1}^{100} k^2 = \frac{100(100 + 1)(2 \times 100 + 1)}{6} = \frac{100 \times 101 \times 201}{6} Calculate this step-by-step:

    • 100×101=10100100 \times 101 = 10100
    • 2×100+1=2012 \times 100 + 1 = 201
    • 10100×201=203010010100 \times 201 = 2030100
    • 2030100÷6=3383502030100 \div 6 = 338350

4. Verify and Summarize

  • Part (a) results in (fg)(1)=1(f \circ g)(1) = -1.
  • Part (b) results in the sum k=1100(fg)(k)2=338350\sum_{k=1}^{100} (f \circ g)(k)^2 = 338350.

Final Answer

  • (a) (fg)(1)=1(f \circ g)(1) = -1
  • (b) k=1100(fg)(k)2=338350\sum_{k=1}^{100} (f \circ g)(k)^2 = 338350

This problem has been solved

Similar Questions

Fie functia f : R −→ R, definita prin f (x) = x + 1, ∀x ∈ R. Sa se rezolve ecuatia(f ◦ f )(x) = f 2(x).

Let f, g : R → R+ defined by f (x) = 2x + 3 and g(x) = x2. Find (f ◦ g)(x) and (g ◦ f )(x)

and , so, the value of composite function f(g(2)) is ____.Question 3Answera.64b.74c.73d.63

iven, f(x) = 2 − x and g(x) = −2x + 3, then what is the value of (2f − g)(2)?a.1b.-1c.2d.-2Clear my choice

Em relação à função real definida por g(x) = 2x + 1, é correto afirmar que g(g(0)) corresponde a:

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.