Knowee
Questions
Features
Study Tools

5. Arrange the functionsn , 1000 log n, n log n, 2n!, 2n, 3n, and n2/1,000,000 in a list sothat each function is big-O of the next function.

Question

5. Arrange the functionsn , 1000 log n, n log n, 2n!, 2n, 3n, and n2/1,000,000 in a list sothat each function is big-O of the next function.
🧐 Not the exact question you are looking for?Go ask a question

Solution 1

The functions arranged in ascending order of growth rates (each function is big-O of the next function) are:

  1. n
  2. 1000 log n
  3. n log n
  4. n^2/1,000,000
  5. 2^n
  6. 3^n
  7. 2n!

Explanation:

  1. n: This is a linear function and has the lowest growth rate among all the given functions.

  2. 1000 log Knowee AI is a powerful AI-powered study tool designed to help you to solve study problem.

Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI  

This problem has been solved

Similar Questions

6. Give as good a big-O estimate as possible for each of these functions.a) (n2 + 8)(n + 1) b) (n log n + n2)(n3 + 2) c) (n! + 2n)(n3 + log(n2 + 1))

State whether the statements are correct or incorrect with reasons.1. O(f(n)) + O(f(n)) = O (2f(n))2. If 3n + 5 = O(n2) , then 3n + 5 = o(n2)

2n(n − 1)/2 ∈ O(n3) b. 2n(n − 1)/2 ∈ O(n2)c. 2n(n − 1)/2 ∈ (n3) d. 2n(n − 1)/2 ∈ (n)

Prove or Disprove (4 Marks)a. ¼ n 2 - 2n + ½ Ɛ O(n 2 )b. 4n 2 + 25 n – 2010 =  (n2)c. 8n 2 + 2n - 3  O(n 2 )d. 2n 2 = 4n + O(22n)

The complexity of linear search algorithm is*1 pointA) O(n2)B) O(log n)C) O(n)D) O(n log n)

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.