Knowee
Questions
Features
Study Tools

When 200 ml 5.15 x 10^-4 M Ba(NO3)2 is added to 150 ml of 8.25 x 10^-3 M Na2SO4. ksp for BaSO4 is 1.8 x 10^- Will preciptation occur

Question

When 200 ml 5.15 x 10^-4 M Ba(NO3)2 is added to 150 ml of 8.25 x 10^-3 M Na2SO4. ksp for BaSO4 is 1.8 x 10^- Will precipitation occur

🧐 Not the exact question you are looking for?Go ask a question

Solution

To determine whether precipitation will occur when mixing these solutions, we need to calculate the ion product (Q) of the potential precipitate, barium sulfate (BaSO₄), and compare it to the solubility product constant (Ksp) for BaSO₄. If Q exceeds Ksp, precipitation will occur.

1. Break Down the Problem

Calculate the concentrations of Ba²⁺ and SO₄²⁻ ions in the mixed solution and then determine the ion product Q.

2. Relevant Concepts

  • Dilution Formula: C1V1=C2V2 C_1V_1 = C_2V_2
  • Ion Product (Q): Q=[Ba2+][SO42] Q = [\text{Ba}^{2+}][\text{SO}_4^{2-}]
  • Ksp for BaSO₄: 1.8×1010 1.8 \times 10^{-10}

3. Analysis and Detail

  1. Calculate the concentration of Ba²⁺ ions after mixing:

    • Initial concentration of Ba(NO₃)₂ = 5.15×104M 5.15 \times 10^{-4} \, \text{M}
    • Volume of Ba(NO₃)₂ = 200 ml = 0.2 L
    • Total volume after mixing = 200 ml + 150 ml = 350 ml = 0.35 L
    • Using dilution formula: [Ba2+]=5.15×104M×0.2L0.35L=2.943×104M [\text{Ba}^{2+}] = \frac{5.15 \times 10^{-4} \, \text{M} \times 0.2 \, \text{L}}{0.35 \, \text{L}} = 2.943 \times 10^{-4} \, \text{M}
  2. Calculate the concentration of SO₄²⁻ ions after mixing:

    • Initial concentration of Na₂SO₄ = 8.25×103M 8.25 \times 10^{-3} \, \text{M}
    • Volume of Na₂SO₄ = 150 ml = 0.15 L
    • Using dilution formula: [SO42]=8.25×103M×0.15L0.35L=3.536×103M [\text{SO}_4^{2-}] = \frac{8.25 \times 10^{-3} \, \text{M} \times 0.15 \, \text{L}}{0.35 \, \text{L}} = 3.536 \times 10^{-3} \, \text{M}
  3. Calculate the ion product Q: Q=[Ba2+][SO42]=(2.943×104M)(3.536×103M)=1.04×106 Q = [\text{Ba}^{2+}][\text{SO}_4^{2-}] = (2.943 \times 10^{-4} \, \text{M})(3.536 \times 10^{-3} \, \text{M}) = 1.04 \times 10^{-6}

4. Verify and Summarize

  • Compare Q with Ksp:
    • Q=1.04×106 Q = 1.04 \times 10^{-6}
    • Ksp=1.8×1010 Ksp = 1.8 \times 10^{-10}
  • Since Q>Ksp Q > Ksp , precipitation of BaSO₄ will occur.

Final Answer

Precipitation of BaSO₄ will occur because the ion product Q=1.04×106 Q = 1.04 \times 10^{-6} is greater than the solubility product constant Ksp=1.8×1010 Ksp = 1.8 \times 10^{-10} .

This problem has been solved

Similar Questions

When 200 ml 5.15 x 10^-4 M Ba(NO3)2 is added to 150 ml of 8.25 x 10^-3 M Na2SO4. ksp for BaSO4 is 1.8 x 10^- Will preciptation occur

Calculate the molar solubility of BaSO4 in 2M Na2SO4 (Ksp = 1.1 x 10-10)2.2 x 10-10M5.5 x 10-11M2M1M

Calculate the molar solubility of BaSO4. (Ksp = 1.1 x 10-10)1.05 x 10-5M2.69 x 10-4M2.14 x 10-4M1.33 x 10-6M

If “X” moles of Ag2Cr2O7 are dissolved in water to produce a saturated solution then Ksp will be

The ratio of the molar amounts of H2S needed to precipitate the metal ions form 20 ml each of 1 M Ca(NO3)2 and 0.5M CuSO4 is 1 : 1 2 : 1 1 : 2 indefinite

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.