Knowee
Questions
Features
Study Tools

Find the exact value of each expression.(a)log4(20) − log4(45) + log4(144)(b)log5(120) − log5(50) − log5(60)

Question

Find the exact value of each expression.

(a) log4(20)log4(45)+log4(144)\log_4(20) - \log_4(45) + \log_4(144)

(b) log5(120)log5(50)log5(60)\log_5(120) - \log_5(50) - \log_5(60)

🧐 Not the exact question you are looking for?Go ask a question

Solution

(a) Break Down the Problem

  1. We need to simplify the expression log4(20)log4(45)+log4(144) \log_4(20) - \log_4(45) + \log_4(144) .

(b) Relevant Concepts

  1. We can use logarithmic properties:
    • logb(m)logb(n)=logb(mn) \log_b(m) - \log_b(n) = \log_b\left(\frac{m}{n}\right)
    • logb(m)+logb(n)=logb(mn) \log_b(m) + \log_b(n) = \log_b(m \cdot n)

(c) Analysis and Detail

  1. Start by combining the first two logarithms: log4(20)log4(45)=log4(2045)=log4(49) \log_4(20) - \log_4(45) = \log_4\left(\frac{20}{45}\right) = \log_4\left(\frac{4}{9}\right)

  2. Now include the third logarithm: log4(49)+log4(144)=log4(49144) \log_4\left(\frac{4}{9}\right) + \log_4(144) = \log_4\left(\frac{4}{9} \cdot 144\right)

  3. Calculate 49144\frac{4}{9} \cdot 144: 41449=5769=64 \frac{4 \cdot 144}{9} = \frac{576}{9} = 64

  4. Therefore, we have: log4(64) \log_4(64)

  5. Since 64=4364 = 4^3: log4(64)=3 \log_4(64) = 3

(d) Verify and Summarize

  1. We have confirmed the calculations and simplified using logarithmic properties to find the exact value.

Final Answer

The exact value of log4(20)log4(45)+log4(144) \log_4(20) - \log_4(45) + \log_4(144) is 3 3 .


(b) Break Down the Problem

  1. We need to simplify the expression log5(120)log5(50)log5(60) \log_5(120) - \log_5(50) - \log_5(60) .

(c) Relevant Concepts

  1. Using the logarithmic properties mentioned above.

(d) Analysis and Detail

  1. Combine the first two logarithms: log5(120)log5(50)=log5(12050)=log5(125) \log_5(120) - \log_5(50) = \log_5\left(\frac{120}{50}\right) = \log_5\left(\frac{12}{5}\right)

  2. Now include the third logarithm: log5(125)log5(60)=log5(12/560)=log5(12300)=log5(125) \log_5\left(\frac{12}{5}\right) - \log_5(60) = \log_5\left(\frac{12/5}{60}\right) = \log_5\left(\frac{12}{300}\right) = \log_5\left(\frac{1}{25}\right)

  3. Since 125=52 \frac{1}{25} = 5^{-2} : log5(125)=2 \log_5\left(\frac{1}{25}\right) = -2

(e) Verify and Summarize

  1. The calculations have been verified; thus, the steps and properties utilized are correct.

Final Answer

The exact value of log5(120)log5(50)log5(60) \log_5(120) - \log_5(50) - \log_5(60) is 2 -2 .

This problem has been solved

Similar Questions

Find the exact value of each expression.(a)log3(12) − log3(28) + log3(63)(b)log4(40) − log4(32) − log4(20)

Select the correct answer.What is the value of this logarithmic expression?log2⁡16−log2⁡4 A. 6 B. 3.58 C. 0.60 D. 2

Select the correct answer.Which expression is equivalent to 5⁢log𝑥⁡2−log𝑥⁡4? A. log𝑥⁡6 B. log𝑥⁡(52) C. log𝑥⁡28 D. log𝑥⁡8

Fill in the missing values to make the equations true.=+(a)log45log49log4=−(b)log8log87log837=(c)log99log93

Evaluate the following logarithmic expressions: (Criteria A)a) log28b) log101000c) lned) log3(1/27)e) log5125

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.