Solve the following quadratic equation for all values of xx in simplest form.4, left bracket, 2, x, minus, 2, right bracket, squared, equals, 164(2x−2) 2 =16
Question
Solve the following quadratic equation for all values of xx in simplest form.
Solution
The equation you provided seems to have a formatting issue. However, I'll assume you meant the equation to be:
4*(2x - 2)^2 = 16
Here are the steps to solve it:
-
Divide both sides of the equation by 4 to simplify:
(2x - 2)^2 = 4
-
Take the square root of both sides:
2x - 2 = ± √4
-
Simplify the right side:
2x - 2 = ± 2
-
Solve for x by adding 2 to both sides:
2x = 2 ± 2
-
Finally, divide by 2 to isolate x:
x = 1 ± 1
So, the solutions are x = 2 and x = 0.
Similar Questions
Solve the following quadratic equation for all values of xx in simplest form.3, left bracket, x, minus, 4, right bracket, squared, equals, 273(x−4) 2 =27
Find the quadratic equation whose roots are twice the roots of the quadratic equation 4x2 – 16x + 15 = 0.
Solve for all values of xx by factoring.x, squared, minus, 11, x, plus, 22, equals, minus, 2x 2 −11x+22=−2
Solve the following quadratic equation for all values of xx in simplest form.4, plus, 3, x, squared, equals, 74+3x 2 =7
Instructions: Match the quadratic equation to the type of factoring that could be used to solve it. 4x2−16=04𝑥2−16=0 16x2−4x=016𝑥2−4𝑥=0 x2+8x+16=0𝑥2+8𝑥+16=0
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.