Knowee
Questions
Features
Study Tools

The proposition p↔q  is equivalent to (¬p ∨ q) ∧(¬q ∨ p)  Group startsTrue or FalseTrue, unselectedFalse

Question

The proposition p ↔ q is equivalent to (¬p ∨ q) ∧ (¬q ∨ p)

Group starts
True or False

  • True, unselected
  • False
🧐 Not the exact question you are looking for?Go ask a question

Solution

Break Down the Problem

  1. We need to determine if the proposition pq p \leftrightarrow q is equivalent to (¬pq)(¬qp) (\neg p \lor q) \land (\neg q \lor p) .
  2. This involves analyzing both expressions and checking if they yield the same truth values.

Relevant Concepts

  • The biconditional pq p \leftrightarrow q states that p p is true if and only if q q is true. This means both p p and q q must have the same truth values.
  • The expression (¬pq) (\neg p \lor q) is true unless p p is true and q q is false.
  • The expression (¬qp) (\neg q \lor p) is true unless q q is true and p p is false.
  • The conjunction \land means both sides must be true for the whole expression to be true.

Analysis and Detail

  1. Truth Table Creation:
    • We will create a truth table for both pq p \leftrightarrow q and (¬pq)(¬qp) (\neg p \lor q) \land (\neg q \lor p) .
p q pq p \leftrightarrow q ¬p \neg p ¬q \neg q ¬pq \neg p \lor q ¬qp \neg q \lor p (¬pq)(¬qp) (\neg p \lor q) \land (\neg q \lor p)
T T T F F T T T
T F F F T F T F
F T F T F T F F
F F T T T T T T
  1. Comparison of Results:
    • From the truth table above, we see that both pq p \leftrightarrow q and (¬pq)(¬qp) (\neg p \lor q) \land (\neg q \lor p) yield the same truth values across all combinations of p p and q q .

Verify and Summarize

  • Since both expressions have the same truth values in every case, we can confirm that they are logically equivalent.

Final Answer

The proposition pq p \leftrightarrow q is equivalent to (¬pq)(¬qp) (\neg p \lor q) \land (\neg q \lor p) ; thus, the statement is True.

This problem has been solved

Similar Questions

The proposition p↔q  is equivalent to (¬p ∨ q) ∧(¬q ∨ p)  Group startsTrue or FalseTrue, unselectedFalse

If    p → ( ¬p ∨ q) is false, then the truth values of p and q are respectively T, F.Group startsTrue or FalseTrue, unselectedFalse, unselected

This statement: [(p → q)   ↔   (¬ p ∨ q) ] is tautologyGroup startsTrue or False

If p is False and q is True, what is the truth value of ~p <--> ~qGroup of answer choicesTrueFalse

The statement (~P<->Q)∧~Q is true when?a.P: False Q: Falseb.P: True Q: Falsec.P: False Q: Trued.P: True Q: True

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.