Knowee
Questions
Features
Study Tools

Using the same substitution u = sin(x) enables us to do16 sin4(x) cos(x) dx = 16u4 du.In terms of u, we get + C, which, in terms of sin(x), becomes + C.

Question

Using the same substitution u = sin(x) enables us to do

16 sin^4(x) cos(x) dx = 16u^4 du.

In terms of u, we get + C, which, in terms of sin(x), becomes + C.

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve the integral 16sin4(x)cos(x)dx \int 16 \sin^4(x) \cos(x) \, dx using the substitution u=sin(x) u = \sin(x) , we can follow these steps:

1. Break Down the Problem

We need to convert the integral into a function of u u and then integrate. The substitution u=sin(x) u = \sin(x) leads to du=cos(x)dx du = \cos(x) \, dx , which allows us to replace cos(x)dx \cos(x) \, dx with du du .

2. Relevant Concepts

Using the substitution:

  • Given u=sin(x) u = \sin(x) implies sin4(x)=u4 \sin^4(x) = u^4 .
  • The differential becomes cos(x)dx=du \cos(x) \, dx = du .

3. Analysis and Detail

Substituting into the integral: 16sin4(x)cos(x)dx=16u4du \int 16 \sin^4(x) \cos(x) \, dx = \int 16 u^4 \, du Now, we integrate 16u4 16 u^4 : 16u4du=16u55=165u5+C \int 16 u^4 \, du = 16 \cdot \frac{u^5}{5} = \frac{16}{5} u^5 + C

4. Verify and Summarize

After integrating, we substitute back u=sin(x) u = \sin(x) : 165u5+C=165sin5(x)+C \frac{16}{5} u^5 + C = \frac{16}{5} \sin^5(x) + C

Final Answer

Thus, the final result of the integral in terms of sin(x) \sin(x) is: 16sin4(x)cos(x)dx=165sin5(x)+C \int 16 \sin^4(x) \cos(x) \, dx = \frac{16}{5} \sin^5(x) + C

This problem has been solved

Similar Questions

Making this substitution using16 sin2(x) cos3(x) dxgives us 16 sin2(x) (1 − sin2(x)) cos(x) dx = 16 sin2(x) cos(x) dx −  cos(x)  dx.

Find an antiderivative of each of the following:sin(2x + π4)a cos(πx)b sin( 2πx3)c

c1 cos2 x +c2 sin2 x +c3 sec2 x +c4 tan2 x = 0when c1 = c2 = 1, c3 = -1, c4 = 1.Example 5CH3_21

Laplace transform of cos⁡(4t) u(t) is1 points/(s^2+16)4/(s^2+16)s/(s^2-16)4/(s^2-16)

Which of the following functions has a maximum y value of 4?y = cos x + 4y = cos( x + 4)y = 4cos xy = cos4 x

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.