Knowee
Questions
Features
Study Tools

If ๐‘ฃ=๐‘“๐‘ฅ,๐‘ฆ, define ๐›ฟ๐‘ฃQuestion 1Answera.๐›ฟ๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘“โˆ‚๐‘ฆ๐›ฟ๐‘ฆb.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ๐›ฟ๐‘ฆc.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ๐›ฟ๐‘ฆd.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ

Question

If ๐‘ฃ=๐‘“(๐‘ฅ,๐‘ฆ), define ๐›ฟ๐‘ฃ

Question 1
Answer

  1. a. ๐›ฟ๐‘ฃ=โˆ‚๐‘“/โˆ‚๐‘ฅ ๐›ฟ๐‘ฅ+โˆ‚๐‘“/โˆ‚๐‘ฆ ๐›ฟ๐‘ฆ
  2. b. ๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ ๐›ฟ๐‘ฆ
  3. c. ๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ/โˆ‚๐‘ฅ ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ/โˆ‚๐‘ฆ ๐›ฟ๐‘ฆ
  4. d. ๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ/โˆ‚๐‘ฅ+โˆ‚๐‘ฃ/โˆ‚๐‘ฆ
๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

To define ฮดv\delta v given v=f(x,y)v = f(x, y), we will analyze the answer choices provided:

1. Break Down the Problem

We know that ฮดv\delta v represents the change in vv resulting from small changes in xx and yy, denoted as ฮดx\delta x and ฮดy\delta y. Therefore, we need to examine each option to see which correctly represents the total derivative of vv.

2. Relevant Concepts

The correct expression for the change in vv based on changes in xx and yy is derived from the multivariable chain rule: ฮดv=โˆ‚vโˆ‚xฮดx+โˆ‚vโˆ‚yฮดy \delta v = \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y

3. Analysis and Detail

Now let's analyze each option:

  1. Option a: ฮดv=โˆ‚fโˆ‚xฮดx+โˆ‚fโˆ‚yฮดy\delta v = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y - This is correct as it uses partial derivatives of ff (where ff is the function describing vv).
  2. Option b: ฮดv=โˆ‚vโˆ‚xฮดx+โˆ‚vโˆ‚yฮดy\delta v = \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y - This is the same formula but incorrect because it uses terms โˆ‚v\partial v which is a different variable representation not derived from ff.
  3. Option c: ฮดv=โˆ‚vโˆ‚xฮดx+โˆ‚vโˆ‚yฮดy\delta v = \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y - Same issue as option b, so this is incorrect in context.
  4. Option d: ฮดv=โˆ‚vโˆ‚x+โˆ‚vโˆ‚y\delta v = \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} - This is incorrect as it suggests an additive form without the changes ฮดx\delta x and ฮดy\delta y.

4. Verify and Summarize

The correct expression for ฮดv\delta v based on the definition and changes in xx and yy is given in Option a. Therefore, the analysis shows that Option a correctly follows the mathematical formulation of changes in multivariable functions.

Final Answer

The correct answer is:
a. ฮดv=โˆ‚fโˆ‚xฮดx+โˆ‚fโˆ‚yฮดy\delta v = \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y

This problem has been solved

Similar Questions

If ๐‘ฃ=๐‘“๐‘ฅ,๐‘ฆ, define ๐›ฟ๐‘ฃQuestion 1Answera.๐›ฟ๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘“โˆ‚๐‘ฆ๐›ฟ๐‘ฆb.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ๐›ฟ๐‘ฆc.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ๐›ฟ๐‘ฆd.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ

If ๐ด๐ตBAโ€‹ and ๐ถ๐ทDCโ€‹ are rational expressions, then ๐ด๐ตโˆ™๐ถ๐ท=๐ดโˆ™๐ถ๐ตโˆ™๐ทBAโ€‹ โˆ™ DCโ€‹ = Bโˆ™DAโˆ™Cโ€‹ .A.TrueB.FalseSUBMITarrow_backPREVIOUS

Which of the following is not a self-inverse function?ย ๐‘ฆ=๐‘ฅ ๐‘ฆ=1๐‘ฅ๐‘ฆ=โˆ’๐‘ฅ๐‘ฆ=๐‘ฅAnswer savedReport a problemPrevious question

If ๐‘…(๐‘ฅ, ๐‘ฆ) = โ€œ๐‘ฅ ๐‘Ÿ๐‘’๐‘™๐‘–๐‘’๐‘  ๐‘ข๐‘๐‘œ๐‘› ๐‘ฆ, โ€ express the following in unambiguousEnglish:a. โˆ€๐‘ฅ โˆƒ๐‘ฆ ๐‘…(๐‘ฅ, ๐‘ฆ)b. โˆ€๐‘ฆ โˆƒ๐‘ฅ ๐‘…(๐‘ฅ, ๐‘ฆ)c. โˆ€๐‘ฅ โˆ€๐‘ฆ ๐‘…(๐‘ฅ, ๐‘ฆ)

Which function defines (๐‘“รท๐‘”)โข(๐‘ฅ) ?๐‘“โก(๐‘ฅ)=(3.6)๐‘ฅ+2๐‘”โก(๐‘ฅ)=(3.6)3โข๐‘ฅ+1 A. (๐‘“รท๐‘”)โข(๐‘ฅ)=(3.6)-2โข๐‘ฅ+1 B. (๐‘“รท๐‘”)โข(๐‘ฅ)=(3.6)4โข๐‘ฅ+3 C. (๐‘“รท๐‘”)โข(๐‘ฅ)=(1.8)3โข๐‘ฅ2+7โข๐‘ฅ+2 D.

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.