Knowee
Questions
Features
Study Tools

Let X be a random variable with p.d.f ๐‘“(๐‘ฅ) = {23 , ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 113 , ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 20, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’Find themoment generating function , mean and standard deviation

Question

Let X X be a random variable with p.d.f

f(x)={23,whenย x=11320,whenย x=200,otherwise f(x) = \begin{cases} 23, & \text{when } x = 113 \\ 20, & \text{when } x = 20 \\ 0, & \text{otherwise} \end{cases}

Find the moment generating function, mean and standard deviation.

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

To find the moment generating function (MGF), mean, and standard deviation for the given probability distribution function (p.d.f.), we will follow these steps:

1. Break Down the Problem

  1. Identify the values and probabilities associated with the random variable X X .
  2. Calculate the moment generating function MX(t) M_X(t) .
  3. Compute the mean E[X] E[X] .
  4. Calculate the variance and standard deviation ฯƒ \sigma .

2. Relevant Concepts

The moment generating function MX(t) M_X(t) is defined as: MX(t)=E[etX]=โˆ‘ipietxi M_X(t) = E[e^{tX}] = \sum_{i} p_i e^{t x_i} Where pi p_i is the probability of X=xi X = x_i .

The mean E[X] E[X] can be calculated as: E[X]=โˆ‘ipixi E[X] = \sum_{i} p_i x_i

The variance Var(X) \text{Var}(X) is computed using: Var(X)=E[X2]โˆ’(E[X])2 \text{Var}(X) = E[X^2] - (E[X])^2 Where E[X2]=โˆ‘ipixi2 E[X^2] = \sum_{i} p_i x_i^2 .

The standard deviation ฯƒ \sigma is the square root of the variance: ฯƒ=Var(X) \sigma = \sqrt{\text{Var}(X)}

3. Analysis and Detail

  1. Identifying Values and Probabilities: Let's denote:

    • x1=13 x_1 = 13 , p1=23 p_1 = \frac{2}{3}
    • x2=20 x_2 = 20 , p2=13 p_2 = \frac{1}{3}
  2. Moment Generating Function Calculation: MX(t)=(23)e13t+(13)e20t M_X(t) = \left(\frac{2}{3}\right)e^{13t} + \left(\frac{1}{3}\right)e^{20t}

  3. Mean Calculation: E[X]=(23)(13)+(13)(20)=263+203=463 E[X] = \left(\frac{2}{3}\right)(13) + \left(\frac{1}{3}\right)(20) = \frac{26}{3} + \frac{20}{3} = \frac{46}{3}

  4. Second Moment Calculation: E[X2]=(23)(132)+(13)(202)=(23)(169)+(13)(400)=3383+4003=7383 E[X^2] = \left(\frac{2}{3}\right)(13^2) + \left(\frac{1}{3}\right)(20^2) = \left(\frac{2}{3}\right)(169) + \left(\frac{1}{3}\right)(400) = \frac{338}{3} + \frac{400}{3} = \frac{738}{3}

  5. Variance Calculation: Var(X)=E[X2]โˆ’(E[X])2=7383โˆ’(463)2=7383โˆ’21169 \text{Var}(X) = E[X^2] - (E[X])^2 = \frac{738}{3} - \left(\frac{46}{3}\right)^2 = \frac{738}{3} - \frac{2116}{9} Converting 7383 \frac{738}{3} to have a common denominator with 21169 \frac{2116}{9} : 7383=22149 \frac{738}{3} = \frac{2214}{9} Therefore, Var(X)=22149โˆ’21169=989 \text{Var}(X) = \frac{2214}{9} - \frac{2116}{9} = \frac{98}{9} And the standard deviation ฯƒ \sigma is: ฯƒ=Var(X)=989=983=723 \sigma = \sqrt{\text{Var}(X)} = \sqrt{\frac{98}{9}} = \frac{\sqrt{98}}{3} = \frac{7\sqrt{2}}{3}

4. Verify and Summarize

The moment generating function, mean, variance, and standard deviation have been correctly computed.

Final Answer

  • Moment Generating Function: MX(t)=23e13t+13e20t M_X(t) = \frac{2}{3} e^{13t} + \frac{1}{3} e^{20t}
  • Mean: E[X]=463 E[X] = \frac{46}{3}
  • Standard Deviation: ฯƒ=723 \sigma = \frac{7\sqrt{2}}{3}

This problem has been solved

Similar Questions

Let X be a random variable with p.d.f ๐‘“(๐‘ฅ) = {23 , ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 113 , ๐‘คโ„Ž๐‘’๐‘› ๐‘ฅ = 20, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’Find themoment generating function , mean and standard deviation

A random variable X has the distribution functionx: 0 1 2 3 4 5 6 7P(x): 0 k 2k 2k 3k2k22kkk ๏€ซ27Then evaluate)

Find the m g f of the pdf ๐‘“(๐‘ฅ) = ๐‘ž๐‘ฅโˆ’1๐‘, ๐‘ฅ = 1,2,3, . . .. and hence evaluate its mean andvariance. (given p+q =1)

The given data set includes 10, 15, 18, 22, 36 and 52. Calculate the Standard Deviation.

Based on the below table, answer the following question:xP(x)30.0540.4050.3060.1570.10What is the standard deviation?Question 3Answera.4.85b.1.06c.0.3

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.