Knowee
Questions
Features
Study Tools

Simplify  $5\sqrt[3]{108}\div\sqrt[3]{-50}$53√108÷3√−50​ .The simplified expression is .

Question

Simplify

51083÷503 5\sqrt[3]{108}\div\sqrt[3]{-50}
The simplified expression is.

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to simplify the expression 51083÷503 5\sqrt[3]{108} \div \sqrt[3]{-50} .

2. Relevant Concepts

The property of cube roots states that: a3b3=ab3 \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} This will help us simplify this expression further.

3. Analysis and Detail

First, we can rewrite the expression using the property of cube roots: 51083÷503=51083503=5108503 5\sqrt[3]{108} \div \sqrt[3]{-50} = 5 \cdot \frac{\sqrt[3]{108}}{\sqrt[3]{-50}} = 5\sqrt[3]{\frac{108}{-50}}

Now, we simplify the fraction inside the cube root: 10850=10850(1)=5425(1) \frac{108}{-50} = \frac{108}{50} \cdot (-1) = \frac{54}{25} \cdot (-1)

Now, we can plug this back into the expression: 55425(1)3=554253 5\sqrt[3]{\frac{54}{25} \cdot (-1)} = 5\sqrt[3]{- \frac{54}{25}}

4. Verify and Summarize

Next, we can separate the cube root: 51354253=5(1)543253=55435=543 5\sqrt[3]{-1} \cdot \sqrt[3]{\frac{54}{25}} = 5 \cdot (-1) \cdot \frac{\sqrt[3]{54}}{\sqrt[3]{25}} = -5 \cdot \frac{\sqrt[3]{54}}{5} = -\sqrt[3]{54}

Final Answer

The simplified expression is: 543 -\sqrt[3]{54}

This problem has been solved

Similar Questions

Simplify  $\sqrt[3]{192}+5\sqrt[3]{64}$3√192+53√64​ .The simplified expression is .

Simplify  $6\sqrt[3]{128t}-2\sqrt[3]{2t}$63√128t−23√2t​ .The simplified expression is .

Simplify  $\left(-4\sqrt[3]{29}\right)\cdot\left(-3\sqrt[3]{38}\right)$(−43√29)·(−33√38)​ .The simplified expression is

Write the expression in radical form.x, start superscript, start fraction, 5, divided by, 3, end fraction, end superscriptx 35​

Write a form of 1 that you can use to rationalize the denominator of the expression  $\frac{8}{\sqrt[3]{4}}$83√4​​ .

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.