Knowee
Questions
Features
Study Tools

Cho biết độ phức tạp của đoạn mã giả sau dùng ký hiệu big-O.int F(int n)if (n <= 2)return 1elsereturn F(n − 2) * F(n − 2)a.O(2^(n/2))b.O(2^n)c.O(n^2)d.O( n )

Question

Cho biết độ phức tạp của đoạn mã giả sau dùng ký hiệu big-O.

int F(int n)
if (n &lt;= 2)
   return 1
else
   return F(n − 2) * F(n − 2)

a. O(2^(n/2))
b. O(2^n)
c. O(n^2)
d. O(n)

🧐 Not the exact question you are looking for?Go ask a question

Solution

Breakdown the Problem

  1. We need to analyze the given pseudocode for the function F(n).
  2. Determine the time complexity using big-O notation.

Relevant Concepts

  1. The function F(n) is defined as:

    • If n2 n \leq 2 , it returns 1 1 .
    • Otherwise, it returns F(n2)F(n2) F(n - 2) * F(n - 2) .
  2. This recursive function is essentially splitting into two calls of F(n-2).

Analysis and Detail

  1. The recursive case can be rewritten as F(n)=[F(n2)]2 F(n) = [F(n-2)]^2 .

  2. Each recursive call reduces n n by 2, leading to this recurrence relation: T(n)=2T(n2)forn>2 T(n) = 2T(n-2) \quad \text{for} \quad n > 2 and T(n)=1 T(n) = 1 for n2 n \leq 2 .

  3. To solve this recurrence, we can expand it: T(n)=2T(n2)=2(2T(n4))=22T(n4)=23T(n6)= T(n) = 2T(n-2) = 2(2T(n-4)) = 2^2 T(n-4) = 2^3 T(n-6) = \ldots Continuing this until we reach the base case, we have k k such that n2k2 n - 2k \leq 2 . Thus, kn2 k \approx \frac{n}{2} .

  4. Replacing T(2) T(2) (the base case) into the equation, we find: T(n)=2kT(2)=2n/21=2n/2 T(n) = 2^{k} T(2) = 2^{n/2} \cdot 1 = 2^{n/2}

Verify and Summarize

  1. The time complexity is O(2n/2) O(2^{n/2}) , which can also be expressed as O(2n) O(\sqrt{2^n}) .

Final Answer

The time complexity of the given pseudocode is a. O(2^(n/2)).

This problem has been solved

Similar Questions

Cho biết độ phức tạp của đoạn mã giả sau dùng ký hiệu big-O.s = 0for (i = 1; i <= n; i *= 3)s = s + a[i]a.O( n )b.O(n^2)c.O(logn)d.O(nlogn)Clear my choice

A growth function that is O(n) is ____________________   A. constant B. logarithmic C. linear D. quadratic E. exponential

Prove or Disprove (4 Marks)a. ¼ n 2 - 2n + ½ Ɛ O(n 2 )b. 4n 2 + 25 n – 2010 =  (n2)c. 8n 2 + 2n - 3  O(n 2 )d. 2n 2 = 4n + O(22n)

Which of the following time complexities indicates the slowest growing function?O(n!)O(2^n)O(n^3)O(n log n)

f(n) = 2^(2n)Which of the following correctly represents the above function?Select one:O(2^n)Ω(2^n)Θ(2^n)None of these

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.