Knowee
Questions
Features
Study Tools

Consider the following matrix.A = 23 12 −36 −19Find the eigenvalues and associated eigenvectors of A. (Arrange the eigenvalues so that 𝜆1 < 𝜆2.)

Question

Consider the following matrix.

A = [23123619] \begin{bmatrix} 23 & 12 \\ -36 & -19 \end{bmatrix}

Find the eigenvalues and associated eigenvectors of A. (Arrange the eigenvalues so that 𝜆1 < 𝜆2.)

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

To find the eigenvalues and associated eigenvectors of the matrix A A , we will:

  1. Calculate the characteristic polynomial by finding the determinant of AλI A - \lambda I .
  2. Solve for the eigenvalues λ \lambda .
  3. For each eigenvalue, solve for the corresponding eigenvector.

2. Relevant Concepts

  • The characteristic polynomial of a matrix A A is given by det(AλI)=0 \det(A - \lambda I) = 0 .
  • Eigenvalues are the solutions λ \lambda to this determinant equation.
  • Eigenvectors v v corresponding to each eigenvalue can be obtained by solving (AλI)v=0 (A - \lambda I)v = 0 .

3. Analysis and Detail

Given the matrix: A=(23123619) A = \begin{pmatrix} 23 & 12 \\ -36 & -19 \end{pmatrix}

Step 3.1: Find the Characteristic Polynomial

We first find AλI A - \lambda I : AλI=(23λ123619λ) A - \lambda I = \begin{pmatrix} 23 - \lambda & 12 \\ -36 & -19 - \lambda \end{pmatrix}

Now, calculate the determinant: det(AλI)=(23λ)(19λ)(12)(36) \det(A - \lambda I) = (23 - \lambda)(-19 - \lambda) - (12)(-36)

Calculating this gives: =(λ23)(λ+19)+432 = (\lambda - 23)(\lambda + 19) + 432 =λ24λ437 = \lambda^2 - 4\lambda - 437

Step 3.2: Solve for Eigenvalues λ\lambda

Set the characteristic polynomial to zero: λ24λ437=0 \lambda^2 - 4\lambda - 437 = 0

Using the quadratic formula: λ=b±b24ac2a \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1,b=4,c=437 a = 1, b = -4, c = -437 : λ=4±(4)241(437)21 \lambda = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-437)}}{2 \cdot 1} =4±16+17482 = \frac{4 \pm \sqrt{16 + 1748}}{2} =4±17642 = \frac{4 \pm \sqrt{1764}}{2} =4±422 = \frac{4 \pm 42}{2} Thus, we have two eigenvalues: λ1=462=23,λ2=382=19 \lambda_1 = \frac{46}{2} = 23, \quad \lambda_2 = \frac{-38}{2} = -19

Step 3.3: Find Eigenvectors

For λ1=23 \lambda_1 = 23 : (A23I)v=0    (0123642)(x1x2)=(00) (A - 23I)v = 0 \implies \begin{pmatrix} 0 & 12 \\ -36 & -42 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} From the first row, we get: 12x2=0    x2=0 12x_2 = 0 \implies x_2 = 0 We can take x1=1 x_1 = 1 as a free variable. So, an eigenvector corresponding to λ1 \lambda_1 is: v1=(10) v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}

For λ2=19 \lambda_2 = -19 : (A+19I)v=0    (4212360)(x1x2)=(00) (A + 19I)v = 0 \implies \begin{pmatrix} 42 & 12 \\ -36 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} From the first row, we can express: 42x1+12x2=0    x2=4212x1=72x1 42x_1 + 12x_2 = 0 \implies x_2 = -\frac{42}{12}x_1 = -\frac{7}{2}x_1 Let x1=2 x_1 = 2 : v2=(27) v_2 = \begin{pmatrix} 2 \\ -7 \end{pmatrix}

4. Verify and Summarize

We found and confirmed the eigenvalues:

  • λ1=19 \lambda_1 = -19
  • λ2=23 \lambda_2 = 23

And their corresponding eigenvectors:

  • v1=(10) v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} for λ1 \lambda_1
  • v2=(27) v_2 = \begin{pmatrix} 2 \\ -7 \end{pmatrix} for λ2 \lambda_2

Final Answer

Eigenvalues: λ1=19,λ2=23 \lambda_1 = -19, \quad \lambda_2 = 23

Eigenvectors: v1=(10),v2=(27) v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -7 \end{pmatrix}

This problem has been solved

Similar Questions

Consider the following matrix.A = 23 12 −36 −19Find the eigenvalues and associated eigenvectors of A. (Arrange the eigenvalues so that 𝜆1 < 𝜆2.)

a) Find the eigenvalues and the associated eigenvectors of the matrixA = [7 0 −3−9 −2 318 0 −8]

Applications of eigen-value and eigen- vectors in finding the power of Matrix A with example

Find the eigen values and eigen vectors of A = [[1, 1, 3], [1, 5, 1], [3, 1, 1]]

Please identify the answer that completes the logical sequence matrix: Answers:

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.