Find the solution of the system of equations.5, x, minus, 2, y, equals, 125x−2y=126, x, plus, 2, y, equals, 326x+2y=32
Question
Find the solution of the system of equations.
Solution
The system of equations is:
5x - 2y = 12 x + 2y = 32
To solve this system of equations, you can use the method of addition (also known as the method of elimination). Here are the steps:
Step 1: Align the equations vertically by variable:
5x - 2y = 12
- (x + 2y = 32)
Step 2: Add the two equations together:
6x = 44
Step 3: Solve for x by dividing both sides of the equation by 6:
x = 44 / 6 x = 7.33 (rounded to two decimal places)
Step 4: Substitute x = 7.33 into the second equation:
7.33 + 2y = 32
Step 5: Solve for y:
2y = 32 - 7.33 2y = 24.67 y = 24.67 / 2 y = 12.33 (rounded to two decimal places)
So, the solution to the system of equations is x = 7.33 and y = 12.33.
Similar Questions
Find the solution of the system of equations.5, x, plus, 10, y, equals, minus, 55x+10y=−5minus, 5, x, minus, y, equals, 32−5x−y=32
Find the solution of the system of equations.6, x, plus, y, equals, 306x+y=30minus, 2, x, minus, 5, y, equals, 18−2x−5y=18
How many solution does the following system of linear equation have - x + 5y = -1 x - y = 2 x + 3y = 3
Find the solution of the system of equations.minus, 6, x, plus, 5, y, equals, 34−6x+5y=34minus, 6, x, minus, 10, y, equals, 4−6x−10y=4
Solve the system of equations minus, 2, x, minus, y, equals, minus, 5−2x−y=−5 and 3, x, minus, 4, y, equals, minus, 423x−4y=−42 by combining the equations.
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.