StudyGPT Just Leveled Up – Say Hello to Knowee! 🚀
Knowee
Questions
Features
Study Tools

If point  P(x, y) is such that  y  =  x3 − 2x2 − 7x + 5&x  =  2 + √3 then point  P(x, y) is?

Question

🧐 Not the exact question you are looking for?Go ask a question

Solution

To find the coordinates of point P(x,y) P(x, y) given the equation y=x32x27x+5 y = x^3 - 2x^2 - 7x + 5 and x=2+3 x = 2 + \sqrt{3} , we will follow these steps:

1. Break Down the Problem

We need to substitute x=2+3 x = 2 + \sqrt{3} into the equation for y y .

2. Relevant Concepts

Recall that to find y y , we need to evaluate the polynomial at the given value for x x : y=x32x27x+5 y = x^3 - 2x^2 - 7x + 5

3. Analysis and Detail

First, calculate x2 x^2 and x3 x^3 :

  • Calculate x2 x^2 : x2=(2+3)2=4+43+3=7+43 x^2 = (2 + \sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3}

  • Calculate x3 x^3 : x3=(2+3)(7+43)=14+83+73+12=26+153 x^3 = (2 + \sqrt{3})(7 + 4\sqrt{3}) = 14 + 8\sqrt{3} + 7\sqrt{3} + 12 = 26 + 15\sqrt{3}

Now substitute x=2+3 x = 2 + \sqrt{3} , x2=7+43 x^2 = 7 + 4\sqrt{3} , and x3=26+153 x^3 = 26 + 15\sqrt{3} into the equation for y y : y=(26+153)2(7+43)7(2+3)+5 y = (26 + 15\sqrt{3}) - 2(7 + 4\sqrt{3}) - 7(2 + \sqrt{3}) + 5

Calculating each term:

  • 2(7+43)=1483 -2(7 + 4\sqrt{3}) = -14 - 8\sqrt{3}
  • 7(2+3)=1473 -7(2 + \sqrt{3}) = -14 - 7\sqrt{3}

Putting it all together: y=(26+153)(14+83)(14+73)+5 y = (26 + 15\sqrt{3}) - (14 + 8\sqrt{3}) - (14 + 7\sqrt{3}) + 5 Combine like terms: y=261414+5+(1538373) y = 26 - 14 - 14 + 5 + (15\sqrt{3} - 8\sqrt{3} - 7\sqrt{3}) y=3+03=3 y = 3 + 0\sqrt{3} = 3

4. Verify and Summarize

After calculating:

  • The value of y y is 3 3 when x=2+3 x = 2 + \sqrt{3} .

Final Answer

The point P(x,y) P(x, y) is (2+3,3) \left(2 + \sqrt{3}, 3\right) .

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.