Knowee
Questions
Features
Study Tools

calcolate tramite un integrale il valore medio del quadrato della funzione seno (o coseno) su un periodo e poi fatene la radice quadrata

Question

Calcolare tramite un integrale il valore medio del quadrato della funzione seno (o coseno) su un periodo e poi fatene la radice quadrata

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. ### Break Down the Problem

To calculate the average value of the square of the sine function sin2(x) \sin^2(x) (or cosine function cos2(x) \cos^2(x) ) over one period, we will:

  1. Identify the period of the function.
  2. Set up the integral for averaging.
  3. Calculate the integral.
  4. Take the square root of the average value.

2. ### Relevant Concepts

The period of the sine and cosine functions is 2π 2\pi . The average value of a function f(x) f(x) over the interval [a,b][a, b] is given by the formula:

Average=1baabf(x)dx \text{Average} = \frac{1}{b - a} \int_a^b f(x) \, dx

For f(x)=sin2(x) f(x) = \sin^2(x) or f(x)=cos2(x) f(x) = \cos^2(x) over the interval [0,2π][0, 2\pi]:

Average=12π02πsin2(x)dx \text{Average} = \frac{1}{2\pi} \int_0^{2\pi} \sin^2(x) \, dx

3. ### Analysis and Detail

Step 1: Calculate the Integral

Using the identity:

sin2(x)=1cos(2x)2 \sin^2(x) = \frac{1 - \cos(2x)}{2}

we can rewrite the integral:

02πsin2(x)dx=02π1cos(2x)2dx \int_0^{2\pi} \sin^2(x) \, dx = \int_0^{2\pi} \frac{1 - \cos(2x)}{2} \, dx

This can be split into two integrals:

=1202π1dx1202πcos(2x)dx = \frac{1}{2} \int_0^{2\pi} 1 \, dx - \frac{1}{2} \int_0^{2\pi} \cos(2x) \, dx

Calculating the first integral:

02π1dx=2π \int_0^{2\pi} 1 \, dx = 2\pi

Calculating the second integral (the integral of cosine over a full period is zero):

02πcos(2x)dx=0 \int_0^{2\pi} \cos(2x) \, dx = 0

Putting it all together:

02πsin2(x)dx=12(2π)12(0)=π \int_0^{2\pi} \sin^2(x) \, dx = \frac{1}{2} (2\pi) - \frac{1}{2} (0) = \pi

Step 2: Average Value

Now substituting back to calculate the average:

Average=12π02πsin2(x)dx=12ππ=12 \text{Average} = \frac{1}{2\pi} \int_0^{2\pi} \sin^2(x) \, dx = \frac{1}{2\pi} \cdot \pi = \frac{1}{2}

4. ### Verify and Summarize

The average value of sin2(x) \sin^2(x) over one period [0,2π] [0, 2\pi] is 12 \frac{1}{2} . Taking the square root to find the final answer:

Final Answer

12=120.7071 \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \approx 0.7071

Thus, the average square root of the sine (or cosine) function over one period is 12 \frac{1}{\sqrt{2}} .

This problem has been solved

Similar Questions

Quale processo descrive il trasporto di grandi particelle o fluidi nella cellula tramite vescicole?a) Endocitosib) Esocitosic) Diffusione facilitatad) Osmosi

A partire dalla mappa su Classroom relativa alla situazione italiana del dopoguerra e dagli appunti presi in classe, scrivere un breve testo sul quaderno.

Calcola la forza elettromotrice per la cella elettrochimica in cui avviene la seguente reazione: Cu2+ (0.10 M) + H2 (1 atm) → Cu(s) + 2H+ (pH = 3.00).

Qual è uno degli approcci teorici alla sociologia della comunicazione?a) Teoria del conflittob) Teoria del giococ) Teoria del caosd) Teoria dell'astrazione

Quelles sont les capacités supérieures à 1 Go ? Question 1Veuillez choisir au moins une réponse.a. 20 000 Mo. b.20 Mo. c.2 000 Mo. d. 2 Mo. e. 200 Mo.

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.