Knowee
Questions
Features
Study Tools

9. Let f be the function from R to R defined by f (x) = x2. Finda) f −1({1}) b) f −1({x | 0 < x < 1}) c) f −1({x | x > 4})

Question

9. Let f be the function from R to R defined by f (x) = x². Find

a) f^{−1}({1})
b) f^{−1}({x | 0 < x < 1})
c) f^{−1}({x | x > 4})

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the inverse image (or preimage) of the function f(x)=x2 f(x) = x^2 for three different sets:

a) f1({1}) f^{-1}(\{1\})
b) f1({x  0<x<1}) f^{-1}(\{x \ | \ 0 < x < 1\})
c) f1({x  x>4}) f^{-1}(\{x \ | \ x > 4\})

2. Relevant Concepts

The inverse image f1(A) f^{-1}(A) for a function f:RR f : \mathbb{R} \to \mathbb{R} is defined as:
f1(A)={xR  f(x)A} f^{-1}(A) = \{ x \in \mathbb{R} \ | \ f(x) \in A \}

3. Analysis and Detail

a) Finding f1({1}) f^{-1}(\{1\})

We need to solve the equation:
f(x)=1    x2=1 f(x) = 1 \implies x^2 = 1 This gives us:
x=1orx=1 x = 1 \quad \text{or} \quad x = -1

Thus,
f1({1})={1,1} f^{-1}(\{1\}) = \{1, -1\}

b) Finding f1({x  0<x<1}) f^{-1}(\{x \ | \ 0 < x < 1\})

We need to solve the inequality:
0<f(x)<1    0<x2<1 0 < f(x) < 1 \implies 0 < x^2 < 1 Taking square roots (and noting the restriction on x x ):
0<x<1    1<x<1andx0 0 < |x| < 1 \implies -1 < x < 1 \quad \text{and} \quad x \neq 0

So, the result is:
f1({x  0<x<1})=(1,0)(0,1) f^{-1}(\{x \ | \ 0 < x < 1\}) = (-1, 0) \cup (0, 1)

c) Finding f1({x  x>4}) f^{-1}(\{x \ | \ x > 4\})

We need to solve the inequality:
f(x)>4    x2>4 f(x) > 4 \implies x^2 > 4 Taking square roots gives us:
x>2    x<2orx>2 |x| > 2 \implies x < -2 \quad \text{or} \quad x > 2

Thus,
f1({x  x>4})=(,2)(2,) f^{-1}(\{x \ | \ x > 4\}) = (-\infty, -2) \cup (2, \infty)

4. Verify and Summarize

Let's summarize the findings:

a) f1({1})={1,1} f^{-1}(\{1\}) = \{1, -1\}
b) f1({x  0<x<1})=(1,0)(0,1) f^{-1}(\{x \ | \ 0 < x < 1\}) = (-1, 0) \cup (0, 1)
c) f1({x  x>4})=(,2)(2,) f^{-1}(\{x \ | \ x > 4\}) = (-\infty, -2) \cup (2, \infty)

Final Answer

a) f1({1})={1,1} f^{-1}(\{1\}) = \{1, -1\}
b) f1({x  0<x<1})=(1,0)(0,1) f^{-1}(\{x \ | \ 0 < x < 1\}) = (-1, 0) \cup (0, 1)
c) f1({x  x>4})=(,2)(2,) f^{-1}(\{x \ | \ x > 4\}) = (-\infty, -2) \cup (2, \infty)

This problem has been solved

Similar Questions

9. Let f be the function from R to R defined by f (x) = x2. Finda) f −1({1}) b) f −1({x | 0 < x < 1}) c) f −1({x | x > 4})

Let f(x) =  x2 – 4, x < 0. What is f-1?Question 3Select one:a.-√(x – 4)b.-√(x – 4), x > 4c.-√(x + 4)d.-√(x + 4), x >-4e.None of these

7. Determine whether each of these functions is a bijection from R to R.a) f (x) = −3x + 4 b) f (x) = −3x2 + 7 c) f (x) = (x + 1)/(x + 2) d) f (x) = x5 + 1

Let f(x) =  x2 – 4, x < 0. What is f-1?Question 5Select one:a.-√(x – 4)b.-√(x – 4), x > 4c.-√(x + 4)d.-√(x + 4), x >-4e.None of these

Question 1 Mark this questionSuppose  for all x values near 4, except possibly at 4.Evaluate .

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.