Knowee
Questions
Features
Study Tools

If f(x) = 2x2 − x + 4, find the following.f(2) = f(−2)= f(a)= f(−a)= f(a + 1)= 2f(a)= f(2a)= f(a2)= [f(a)]2= f(a + h)=

Question

If f(x) = 2x² − x + 4, find the following.

  • f(2)
  • f(−2)
  • f(a)
  • f(−a)
  • f(a + 1)
  • 2f(a)
  • f(2a)
  • f(a²)
  • [f(a)]²
  • f(a + h)
🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to evaluate the function f(x)=2x2x+4 f(x) = 2x^2 - x + 4 for various inputs, including specific values and expressions involving a a and h h .

2. Relevant Concepts

To evaluate f f at different arguments, we simply substitute the values into the expression for f(x) f(x) .

3. Analysis and Detail

Let's compute each requirement one by one.

  1. For f(2) f(2) :
    f(2)=2(2)2(2)+4=242+4=82+4=10 f(2) = 2(2)^2 - (2) + 4 = 2 \cdot 4 - 2 + 4 = 8 - 2 + 4 = 10

  2. For f(2) f(-2) :
    f(2)=2(2)2(2)+4=24+2+4=8+2+4=14 f(-2) = 2(-2)^2 - (-2) + 4 = 2 \cdot 4 + 2 + 4 = 8 + 2 + 4 = 14

  3. For f(a) f(a) :
    f(a)=2(a)2(a)+4=2a2a+4 f(a) = 2(a)^2 - (a) + 4 = 2a^2 - a + 4

  4. For f(a) f(-a) :
    f(a)=2(a)2(a)+4=2a2+a+4 f(-a) = 2(-a)^2 - (-a) + 4 = 2a^2 + a + 4

  5. For f(a+1) f(a + 1) :
    f(a+1)=2(a+1)2(a+1)+4 f(a + 1) = 2(a + 1)^2 - (a + 1) + 4
    First, expand (a+1)2 (a + 1)^2 :
    (a+1)2=a2+2a+1 (a + 1)^2 = a^2 + 2a + 1
    Substituting:
    f(a+1)=2(a2+2a+1)(a+1)+4=2a2+4a+2a1+4=2a2+3a+5 f(a + 1) = 2(a^2 + 2a + 1) - (a + 1) + 4 = 2a^2 + 4a + 2 - a - 1 + 4 = 2a^2 + 3a + 5

  6. For 2f(a) 2f(a) :
    2f(a)=2(2a2a+4)=4a22a+8 2f(a) = 2(2a^2 - a + 4) = 4a^2 - 2a + 8

  7. For f(2a) f(2a) :
    f(2a)=2(2a)2(2a)+4=24a22a+4=8a22a+4 f(2a) = 2(2a)^2 - (2a) + 4 = 2 \cdot 4a^2 - 2a + 4 = 8a^2 - 2a + 4

  8. For f(a2) f(a^2) :
    f(a2)=2(a2)2(a2)+4=2a4a2+4 f(a^2) = 2(a^2)^2 - (a^2) + 4 = 2a^4 - a^2 + 4

  9. For [f(a)]2 [f(a)]^2 :
    [f(a)]2=(2a2a+4)2 [f(a)]^2 = (2a^2 - a + 4)^2
    Expanding using (x+y+z)2 (x + y + z)^2 :
    (2a2)2+(a)2+42+2(2a2)(a)+2(2a2)(4)+2(a)(4) (2a^2)^2 + (-a)^2 + 4^2 + 2(2a^2)(-a) + 2(2a^2)(4) + 2(-a)(4)
    =4a4+a2+164a3+16a28a=4a44a3+17a28a+16 = 4a^4 + a^2 + 16 - 4a^3 + 16a^2 - 8a = 4a^4 - 4a^3 + 17a^2 - 8a + 16

  10. For f(a+h) f(a + h) :
    f(a+h)=2(a+h)2(a+h)+4 f(a + h) = 2(a + h)^2 - (a + h) + 4
    Expanding:
    (a+h)2=a2+2ah+h2 (a + h)^2 = a^2 + 2ah + h^2 Thus,
    f(a+h)=2(a2+2ah+h2)(a+h)+4=2a2+4ah+2h2ah+4 f(a + h) = 2(a^2 + 2ah + h^2) - (a + h) + 4 = 2a^2 + 4ah + 2h^2 - a - h + 4 Simplifying:
    =2a2+4ah+2h2ah+4 = 2a^2 + 4ah + 2h^2 - a - h + 4

4. Verify and Summarize

The computations have been carried out step-by-step for each condition provided. Each expression has been simplified properly.

Final Answer

  • f(2)=10 f(2) = 10
  • f(2)=14 f(-2) = 14
  • f(a)=2a2a+4 f(a) = 2a^2 - a + 4
  • f(a)=2a2+a+4 f(-a) = 2a^2 + a + 4
  • f(a+1)=2a2+3a+5 f(a + 1) = 2a^2 + 3a + 5
  • 2f(a)=4a22a+8 2f(a) = 4a^2 - 2a + 8
  • f(2a)=8a22a+4 f(2a) = 8a^2 - 2a + 4
  • f(a2)=2a4a2+4 f(a^2) = 2a^4 - a^2 + 4
  • [f(a)]2=4a44a3+17a28a+16 [f(a)]^2 = 4a^4 - 4a^3 + 17a^2 - 8a + 16
  • f(a+h)=2a2+4ah+2h2ah+4 f(a + h) = 2a^2 + 4ah + 2h^2 - a - h + 4

This problem has been solved

Similar Questions

If f(x) = 2x2 − x + 4, find the following.f(2) = f(−2)= f(a)= f(−a)= f(a + 1)= 2f(a)= f(2a)= f(a2)= [f(a)]2= f(a + h)=

If f(x)=6x-4 , what is f(x) when x=8?

iven, f(x) = 2 − x and g(x) = −2x + 3, then what is the value of (2f − g)(2)?a.1b.-1c.2d.-2Clear my choice

Let 𝑓⁡(𝑥)= 2⁢𝑥2. Find and simplify the following:(a) 𝑓⁢(𝑥+3)=  (b) 𝑓⁡(𝑥+3)-𝑓⁡(3)=

If 𝑓(𝑥)=2𝑥+3f(x)=2x+3, 𝑔(𝑥)=𝑥2−5g(x)=x 2 −5, and ℎ(𝑥)=𝑥2h(x)= 2x​ , find the value of h(g(f(4))).a116b58c11d4

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.