Knowee
Questions
Features
Study Tools

Find the general solution of this differential equation with separable variables: ((3e^x)sin y dx + (1 - e^x)cos ydy = 0)

Question

Find the general solution of this differential equation with separable variables:

((3e^x)\sin y ; dx + (1 - e^x)\cos y ; dy = 0)

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We have the differential equation: (3exsiny)dx+(1ex)cosydy=0. (3e^x \sin y) \, dx + (1 - e^x) \cos y \, dy = 0. We need to rearrange it into a form where we can separate the variables x x and y y .

2. Relevant Concepts

Since the equation is separable, we want to rearrange it to the form: dydx=(3exsiny)(1ex)cosy. \frac{dy}{dx} = -\frac{(3e^x \sin y)}{(1 - e^x) \cos y}.

3. Analysis and Detail

Rearranging the equation gives us: cosysinydy=3ex1exdx. \frac{\cos y}{\sin y} \, dy = -\frac{3e^x}{1 - e^x} \, dx.

Next, we identify that cosysiny=coty\frac{\cos y}{\sin y} = \cot y, hence we rewrite it as: cotydy=3ex1exdx. \cot y \, dy = -\frac{3e^x}{1 - e^x} \, dx.

Now we separate the variables: cotydy=3ex1exdx. \int \cot y \, dy = -3 \int \frac{e^x}{1 - e^x} \, dx.

Calculating the integrals:

  1. Left-hand side: cotydy=lnsiny+C1. \int \cot y \, dy = \ln |\sin y| + C_1.

  2. Right-hand side: For the right-hand side, we can simplify: ex1ex=1+11ex. \frac{e^x}{1 - e^x} = -1 + \frac{1}{1 - e^x}. So, 3ex1exdx=3(xln1ex)+C2=3x+3ln1ex+C2. -3 \int \frac{e^x}{1 - e^x} \, dx = -3 \left(-x - \ln |1 - e^x| \right) + C_2 = 3x + 3\ln |1 - e^x| + C_2.

4. Verify and Summarize

So far, we have: lnsiny=3x+3ln1ex+C, \ln |\sin y| = 3x + 3 \ln |1 - e^x| + C, where C=C2C1 C = C_2 - C_1 is a constant.

Final Answer

Exponentiating both sides, we find: siny=K1ex3e3x, |\sin y| = K |1 - e^x|^3 e^{3x}, where K=eC K = e^C is a constant. Thus, the general solution is: siny=K(1ex)3e3xorsiny=K(1ex)3e3x. \sin y = K (1 - e^x)^3 e^{3x} \quad \text{or} \quad \sin y = -K (1 - e^x)^3 e^{3x}.

This problem has been solved

Similar Questions

Find the general solution of the following differential equations.(a) ysinxdx + (y3 - 2y2 cosx + cosx)dy = 0

Find the particular solution of this differential equation with initial conditions y(0)=1: (y' = y:(3x-y^2))

Find the general solution of the second order, linear differential equationy′′ + 3y′ + 2y = sin(x), y = y(x)

Find the general solution of the following differential equations using the method of undeter-mined coefficientsy′′ − 2y′ + y = ex + x2

y=(3x−2).e−2x𝑦=(3𝑥−2).𝑒−2𝑥   Giá trị của  y′′(1)𝑦″(1)  là:Select one:a.y′′(1)=−8e2𝑦"(1)=−8𝑒2b.y′′(1)=−7e2𝑦"(1)=−7𝑒2c.y′′(1)=−8e−2𝑦"(1)=−8𝑒−2d.y′′(1)=8e2

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.