Knowee
Questions
Features
Study Tools

y=(3x−2).e−2x𝑦=(3𝑥−2).𝑒−2𝑥   Giá trị của  y′′(1)𝑦″(1)  là:Select one:a.y′′(1)=−8e2𝑦"(1)=−8𝑒2b.y′′(1)=−7e2𝑦"(1)=−7𝑒2c.y′′(1)=−8e−2𝑦"(1)=−8𝑒−2d.y′′(1)=8e2

Question

y=(3x−2).e−2x

Giá trị của y′′(1) là:
Select one:
a. y′′(1)=−8e2
b. y′′(1)=−7e2
c. y′′(1)=−8e−2
d. y′′(1)=8e2

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the second derivative y(1) y''(1) for the function given by:

y=(3x2)e2x y = (3x - 2)e^{-2x}

Once we find y(1) y''(1) , we will compare it to the options provided to select the correct answer.

2. Relevant Concepts

To find y(x) y''(x) , we will need to:

  • Find the first derivative y y' using the product rule.
  • Then, find the second derivative y y'' also using the product rule and possibly the chain rule.
  • Evaluate y(1) y''(1) .

3. Analysis and Detail

Finding the first derivative y y' :

Using the product rule, where u=3x2 u = 3x - 2 and v=e2x v = e^{-2x} :

y=uv+uv y' = u'v + uv'

Calculating u u' and v v' :

  • u=3 u' = 3
  • v=e2x v = e^{-2x}
  • v=2e2x v' = -2e^{-2x}

Now substituting into the product rule:

y=(3)(e2x)+(3x2)(2e2x) y' = (3)(e^{-2x}) + (3x - 2)(-2e^{-2x})

Simplifying y y' :

y=3e2x2(3x2)e2x=(36x+4)e2x=(6x+7)e2x y' = 3e^{-2x} - 2(3x - 2)e^{-2x} = (3 - 6x + 4)e^{-2x} = (-6x + 7)e^{-2x}

Finding the second derivative y y'' :

Now differentiate y y' again using the product rule:

Let u=6x+7 u = -6x + 7 and v=e2x v = e^{-2x} :

y=uv+uv y'' = u'v + uv'

Calculating u u' and v v' :

  • u=6 u' = -6
  • v=2e2x v' = -2e^{-2x}

Substituting:

y=(6)(e2x)+(6x+7)(2e2x) y'' = (-6)(e^{-2x}) + (-6x + 7)(-2e^{-2x})

Simplifying:

y=6e2x+12(3x72)e2x y'' = -6e^{-2x} + 12(3x - \frac{7}{2})e^{-2x}

Putting it all together:

y=(6+12(3x7/2))e2x y'' = (-6 + 12(3x - 7/2))e^{-2x}

4. Verify and Summarize

Now evaluate y(1) y''(1) :

y(1)=(6+12(317/2))e21 y''(1) = (-6 + 12(3 \cdot 1 - 7/2))e^{-2 \cdot 1} =(6+12(33.5))e2=(6+12(0.5))e2=(66)e2=12e2 = (-6 + 12(3 - 3.5))e^{-2} = (-6 + 12(-0.5))e^{-2} = (-6 - 6)e^{-2} = -12e^{-2}

Final Answer

After thoroughly calculating y(1) y''(1) we have:

y(1)=12e2 y''(1) = -12e^{-2}

None of the options exactly match the computed result 12e2 -12e^{-2} . Thus, based on the available options, there may have been an error or mismatch in the options presented. However, the calculated value is provided for your reference.

This problem has been solved

Similar Questions

y=(3x−2).e−2x𝑦=(3𝑥−2).𝑒−2𝑥   Giá trị của  y′′(1)𝑦″(1)  là:Select one:a.y′′(1)=−8e2𝑦"(1)=−8𝑒2b.y′′(1)=−7e2𝑦"(1)=−7𝑒2c.y′′(1)=−8e−2𝑦"(1)=−8𝑒−2d.y′′(1)=8e2

Find the particular solution of this differential equation with initial conditions y(0)=1: (y' = y:(3x-y^2))

𝑔(𝑡)={2𝑡2+2𝑡−24𝑡−3𝑖𝑓 𝑡≠3𝑏𝑖𝑓 𝑡=3g(t)={ t−32t 2 +2t−24​ b​ if t≠3if t=3​ A.14B.3C.7D.None of theseE.0

Solve the formula b=−8y−3aa𝑏=-8𝑦-3𝑎𝑎 for a𝑎 .a𝑎 =  Enter your answer as an expression.

Select only those literals that are NOT strings Select one or more options from the list Report a typo "3" 'a' 7000 "7000" '3' "0000"

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.