StudyGPT Just Leveled Up – Say Hello to Knowee! 🚀
Knowee
Questions
Features
Study Tools

Perform the indicated operations.$6\begin{bmatrix}1&3&2\\-2&4&-1\end{bmatrix}+\begin{bmatrix}5&7&-1\\6&-4&7\end{bmatrix}=$6[1 3 2−2 4 −1]+[5 7 −16 −4 7]=​

Question

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to perform the operations on a matrix expression that involves scalar multiplication and matrix addition:

  1. Multiply the first matrix by the scalar 6.
  2. Add the result to the second matrix.

2. Relevant Concepts

  • Scalar multiplication of a matrix involves multiplying each element of the matrix by that scalar.
  • Matrix addition requires both matrices to have the same dimensions, and we simply add the corresponding elements.

3. Analysis and Detail

Step 3.1: Matrix Scalar Multiplication

Given matrix: A=[132241] A = \begin{bmatrix}1 & 3 & 2 \\ -2 & 4 & -1\end{bmatrix} Multiply by scalar 6: 6A=6[132241]=[616362626461] 6A = 6 \cdot \begin{bmatrix}1 & 3 & 2 \\ -2 & 4 & -1\end{bmatrix} = \begin{bmatrix}6 \cdot 1 & 6 \cdot 3 & 6 \cdot 2 \\ 6 \cdot -2 & 6 \cdot 4 & 6 \cdot -1\end{bmatrix} Calculating the elements gives: 6A=[6181212246] 6A = \begin{bmatrix}6 & 18 & 12 \\ -12 & 24 & -6\end{bmatrix}

Step 3.2: Matrix Addition

Now consider the second matrix: B=[571647] B = \begin{bmatrix}5 & 7 & -1 \\ 6 & -4 & 7\end{bmatrix} We now add the matrices 6A6A and BB: 6A+B=[6181212246]+[571647] 6A + B = \begin{bmatrix}6 & 18 & 12 \\ -12 & 24 & -6\end{bmatrix} + \begin{bmatrix}5 & 7 & -1 \\ 6 & -4 & 7\end{bmatrix} Performing the addition element by element: [6+518+712112+62446+7]=[1125116201] \begin{bmatrix}6 + 5 & 18 + 7 & 12 - 1 \\ -12 + 6 & 24 - 4 & -6 + 7\end{bmatrix} = \begin{bmatrix}11 & 25 & 11 \\ -6 & 20 & 1\end{bmatrix}

4. Verify and Summarize

Upon verifying, the calculations were correct. Therefore, we summarize our final result.

Final Answer

6[132241]+[571647]=[1125116201] 6\begin{bmatrix}1 & 3 & 2 \\ -2 & 4 & -1\end{bmatrix} + \begin{bmatrix}5 & 7 & -1 \\ 6 & -4 & 7\end{bmatrix} = \begin{bmatrix}11 & 25 & 11 \\ -6 & 20 & 1\end{bmatrix}

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.