Knowee
Questions
Features
Study Tools

Find the standard deviation of the given data sets 7,47,8,42,47,95,42,96,329.0930.0931.0932.09

Question

Find the standard deviation of the given data sets

Data sets:

7, 47, 8, 42, 47, 95, 42, 96, 329, 0930, 0931, 0932, 09

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

To find the standard deviation of the given data set, we will:

  1. Calculate the mean (average) of the data set.
  2. Find the squared deviations from the mean.
  3. Calculate the variance.
  4. Take the square root of the variance to find the standard deviation.

2. Relevant Concepts

The standard deviation σ\sigma is calculated using the formula: σ=(xiμ)2n \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} where:

  • μ\mu is the mean of the data,
  • nn is the number of observations,
  • xix_i represents each value in the data set.

3. Analysis and Detail

Step 1: Calculate the Mean

Given data set: 7,47,8,42,47,95,42,96,329.09,30.09,31.09,32.097, 47, 8, 42, 47, 95, 42, 96, 329.09, 30.09, 31.09, 32.09

The mean μ\mu is: μ=7+47+8+42+47+95+42+96+329.09+30.09+31.09+32.0912 \mu = \frac{7 + 47 + 8 + 42 + 47 + 95 + 42 + 96 + 329.09 + 30.09 + 31.09 + 32.09}{12} Calculating the sum: Sum=7+47+8+42+47+95+42+96+329.09+30.09+31.09+32.09=731.36 \text{Sum} = 7 + 47 + 8 + 42 + 47 + 95 + 42 + 96 + 329.09 + 30.09 + 31.09 + 32.09 = 731.36 Calculating the mean: μ=731.361260.9467 \mu = \frac{731.36}{12} \approx 60.9467

Step 2: Find Squared Deviations

Now we calculate the squared deviations from the mean for each data point, xix_i: (xiμ)2 (x_i - \mu)^2

Calculating squared deviations:

  • For 77: (760.9467)22904.4801(7 - 60.9467)^2 \approx 2904.4801
  • For 4747: (4760.9467)2192.0531(47 - 60.9467)^2 \approx 192.0531
  • For 88: (860.9467)22844.0285(8 - 60.9467)^2 \approx 2844.0285
  • For 4242: (4260.9467)2352.6766(42 - 60.9467)^2 \approx 352.6766
  • For 4747: (4760.9467)2192.0531(47 - 60.9467)^2 \approx 192.0531
  • For 9595: (9560.9467)21178.1064(95 - 60.9467)^2 \approx 1178.1064
  • For 4242: (4260.9467)2352.6766(42 - 60.9467)^2 \approx 352.6766
  • For 9696: (9660.9467)21274.7071(96 - 60.9467)^2 \approx 1274.7071
  • For 329.09329.09: (329.0960.9467)271035.7399(329.09 - 60.9467)^2 \approx 71035.7399
  • For 30.0930.09: (30.0960.9467)2958.5617(30.09 - 60.9467)^2 \approx 958.5617
  • For 31.0931.09: (31.0960.9467)2873.7424(31.09 - 60.9467)^2 \approx 873.7424
  • For 32.0932.09: (32.0960.9467)2832.0833(32.09 - 60.9467)^2 \approx 832.0833

Step 3: Calculate the Variance

Calculate the variance σ2\sigma^2 using the sum of squared deviations: σ2=(xiμ)2n \sigma^2 = \frac{\sum (x_i - \mu)^2}{n} Calculating total squared deviations: Total=2904.4801+192.0531+2844.0285+352.6766+192.0531+1178.1064+352.6766+1274.7071+71035.7399+958.5617+873.7424+832.083377096.0799 \text{Total} = 2904.4801 + 192.0531 + 2844.0285 + 352.6766 + 192.0531 + 1178.1064 + 352.6766 + 1274.7071 + 71035.7399 + 958.5617 + 873.7424 + 832.0833 \approx 77096.0799 Calculating variance: σ2=77096.0799126424.6733 \sigma^2 = \frac{77096.0799}{12} \approx 6424.6733

Step 4: Calculate the Standard Deviation

σ=6424.673380.0638 \sigma = \sqrt{6424.6733} \approx 80.0638

4. Verify and Summarize

We have calculated the mean, found the squared deviations, computed the total, and derived the variance and standard deviation correctly.

Final Answer

The standard deviation of the given data set is approximately 80.0680.06.

This problem has been solved

Similar Questions

The given data set includes 10, 15, 18, 22, 36 and 52. Calculate the Standard Deviation.

Consider the following dataset: 9, 12, 15, 18, 21. What is the standard deviation of this dataset?a.3.6b.4c.4.24d.5.5

Find the sample standard deviation for the datax 1 2 3 4 5 6 7 8 9 10f 384 208 98 56 28 12 8 2 3 1Round to three decimals.

Calculate the standard deviation of the sample quantitative data shown, to two decimal places. x 5 10.6 2 24.7 22.3 18.9 Standard deviation:

STANDARD DEVIATION A data set contains the following values: 11, 3, 5, 18, 1, 4, 7. Find the population variance. Round your answer to 4 decimal places.

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.