Knowee
Questions
Features
Study Tools

Find the sample standard deviation for the datax 1 2 3 4 5 6 7 8 9 10f 384 208 98 56 28 12 8 2 3 1Round to three decimals.

Question

Find the sample standard deviation for the data

data
x	1	2	3	4	5	6	7	8	9	10
f	384	208	98	56	28	12	8	2	3	1

Round to three decimals.

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

To find the sample standard deviation, we need to follow these steps:

  1. Calculate the mean of the data.
  2. Use the frequencies to determine the weighted squared deviations from the mean.
  3. Calculate the sample standard deviation from these squared deviations.

2. Relevant Concepts

The formula for the sample standard deviation s s is given by:

s=1n1i=1Nfi(xixˉ)2 s = \sqrt{\frac{1}{n - 1} \sum_{i=1}^{N} f_i (x_i - \bar{x})^2}

Where:

  • N N is the total number of different values.
  • n n is the total number of observations.
  • fi f_i is the frequency of each observation.
  • xi x_i is each individual observation.
  • xˉ \bar{x} is the mean of the data.

3. Analysis and Detail

Step 1: Calculate the mean xˉ \bar{x}

We need to find n n (the sum of frequencies) and use it to calculate the mean.

n=384+208+98+56+28+12+8+2+3+1=798 n = 384 + 208 + 98 + 56 + 28 + 12 + 8 + 2 + 3 + 1 = 798

Now, calculate the mean:

xˉ=(fixi)n \bar{x} = \frac{\sum (f_i \cdot x_i)}{n}

Calculating (fixi) \sum (f_i \cdot x_i) :

(fixi)=3841+2082+983+564+285+126+87+28+39+110 \sum (f_i \cdot x_i) = 384 \cdot 1 + 208 \cdot 2 + 98 \cdot 3 + 56 \cdot 4 + 28 \cdot 5 + 12 \cdot 6 + 8 \cdot 7 + 2 \cdot 8 + 3 \cdot 9 + 1 \cdot 10

Calculating each term:

  • 3841=384 384 \cdot 1 = 384
  • 2082=416 208 \cdot 2 = 416
  • 983=294 98 \cdot 3 = 294
  • 564=224 56 \cdot 4 = 224
  • 285=140 28 \cdot 5 = 140
  • 126=72 12 \cdot 6 = 72
  • 87=56 8 \cdot 7 = 56
  • 28=16 2 \cdot 8 = 16
  • 39=27 3 \cdot 9 = 27
  • 110=10 1 \cdot 10 = 10

Summing these up:

384+416+294+224+140+72+56+16+27+10=1770 384 + 416 + 294 + 224 + 140 + 72 + 56 + 16 + 27 + 10 = 1770

Calculating mean:

xˉ=17707982.216 \bar{x} = \frac{1770}{798} \approx 2.216

Step 2: Calculating (xixˉ)2 (x_i - \bar{x})^2 and the weighted sum

Now compute (xixˉ)2 (x_i - \bar{x})^2 :

  • For x1=1 x_1=1 : (12.216)21.469 (1 - 2.216)^2 \approx 1.469
  • For x2=2 x_2=2 : (22.216)20.047 (2 - 2.216)^2 \approx 0.047
  • For x3=3 x_3=3 : (32.216)20.608 (3 - 2.216)^2 \approx 0.608
  • For x4=4 x_4=4 : (42.216)23.188 (4 - 2.216)^2 \approx 3.188
  • For x5=5 x_5=5 : (52.216)27.658 (5 - 2.216)^2 \approx 7.658
  • For x6=6 x_6=6 : (62.216)214.126 (6 - 2.216)^2 \approx 14.126
  • For x7=7 x_7=7 : (72.216)222.571 (7 - 2.216)^2 \approx 22.571
  • For x8=8 x_8=8 : (82.216)232.000 (8 - 2.216)^2 \approx 32.000
  • For x9=9 x_9=9 : (92.216)243.400 (9 - 2.216)^2 \approx 43.400
  • For x10=10 x_{10}=10 : (102.216)260.475 (10 - 2.216)^2 \approx 60.475

Next, we multiply each squared deviation by its frequency and sum these:

fi(xixˉ)2=3841.469+2080.047+980.608+563.188+287.658+1214.126+822.571+232.000+343.400+160.475 \sum f_i (x_i - \bar{x})^2 = 384 \cdot 1.469 + 208 \cdot 0.047 + 98 \cdot 0.608 + 56 \cdot 3.188 + 28 \cdot 7.658 + 12 \cdot 14.126 + 8 \cdot 22.571 + 2 \cdot 32.000 + 3 \cdot 43.400 + 1 \cdot 60.475

Calculating these products:

  • 3841.469564.576 384 \cdot 1.469 \approx 564.576
  • 2080.0479.776 208 \cdot 0.047 \approx 9.776
  • 980.60859.584 98 \cdot 0.608 \approx 59.584
  • 563.188178.528 56 \cdot 3.188 \approx 178.528
  • 287.658214.424 28 \cdot 7.658 \approx 214.424
  • 1214.126169.512 12 \cdot 14.126 \approx 169.512
  • 822.571180.568 8 \cdot 22.571 \approx 180.568
  • 232.00064.000 2 \cdot 32.000 \approx 64.000
  • 343.400130.200 3 \cdot 43.400 \approx 130.200
  • 160.47560.475 1 \cdot 60.475 \approx 60.475

Summing these products:

564.576+9.776+59.584+178.528+214.424+169.512+180.568+64.000+130.200+60.475=1577.643 564.576 + 9.776 + 59.584 + 178.528 + 214.424 + 169.512 + 180.568 + 64.000 + 130.200 + 60.475 = 1577.643

Step 3: Calculate Sample Standard Deviation

Now we can calculate the sample standard deviation:

s=1n1fi(xixˉ)2 s = \sqrt{\frac{1}{n - 1} \sum f_i (x_i - \bar{x})^2}

Substituting the values:

s=179811577.6431577.6437971.9791.406 s = \sqrt{\frac{1}{798 - 1} \cdot 1577.643} \approx \sqrt{\frac{1577.643}{797}} \approx \sqrt{1.979} \approx 1.406

4. Verify and Summarize

The calculation seems correct, and everything is verified. The resulting sample standard deviation is approximately 1.406 1.406 .

Final Answer

The sample standard deviation is approximately 1.406.

This problem has been solved

Similar Questions

Find the sample standard deviation for the datax 1 2 3 4 5 6 7 8 9 10f 384 208 98 56 28 12 8 2 3 1Round to three decimals.

What is the standard deviation of the following list?34,1,23,4,3,3,12,4,3,1Please enter at least 3 digits after the decimal

Consider the following dataset: 9, 12, 15, 18, 21. What is the standard deviation of this dataset?a.3.6b.4c.4.24d.5.5

STANDARD DEVIATION A data set contains the following values: 11, 3, 5, 18, 1, 4, 7. Find the population variance. Round your answer to 4 decimal places.

Calculate the standard deviation of the sample quantitative data shown, to two decimal places. x 5 10.6 2 24.7 22.3 18.9 Standard deviation:

1/3

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.