Knowee
Questions
Features
Study Tools

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), determine 3โˆ‚2๐‘งโˆ‚๐‘ฆ2-2โˆ‚2๐‘งโˆ‚๐‘ฅ2Question 9Answera.-6๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ)b.12๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ)c.6๐‘งd.6๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)

Question

If z = sin(3x + 2y), determine

3 โˆ‚2zโˆ‚y2 \frac{\partial^2 z}{\partial y^2} - 2 โˆ‚2zโˆ‚x2 \frac{\partial^2 z}{\partial x^2}


Question 9

Answer
a. -6 sin(3x + 2y)
b. 12 sin(3x + 2y)
c. 6z
d. 6 cos(3x + 2y)

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to calculate the second partial derivatives of the function z=sinโก(3x+2y) z = \sin(3x + 2y) with respect to y y and x x , then evaluate the expression 3โˆ‚2zโˆ‚y2โˆ’2โˆ‚2zโˆ‚x2 3\frac{\partial^2 z}{\partial y^2} - 2\frac{\partial^2 z}{\partial x^2} .

2. Relevant Concepts

  • Partial Derivatives: To find โˆ‚zโˆ‚y \frac{\partial z}{\partial y} and โˆ‚zโˆ‚x \frac{\partial z}{\partial x} , we will use: โˆ‚zโˆ‚y=โˆ‚โˆ‚y(sinโก(3x+2y))andโˆ‚zโˆ‚x=โˆ‚โˆ‚x(sinโก(3x+2y)) \frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(\sin(3x + 2y)) \quad \text{and} \quad \frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(\sin(3x + 2y))
  • Second Partial Derivatives: Then we need to find: โˆ‚2zโˆ‚y2andโˆ‚2zโˆ‚x2 \frac{\partial^2 z}{\partial y^2} \quad \text{and} \quad \frac{\partial^2 z}{\partial x^2}

3. Analysis and Detail

Step 1: First Partial Derivative with respect to y y

Using the chain rule: โˆ‚zโˆ‚y=cosโก(3x+2y)โ‹…โˆ‚โˆ‚y(3x+2y)=cosโก(3x+2y)โ‹…2 \frac{\partial z}{\partial y} = \cos(3x + 2y) \cdot \frac{\partial}{\partial y}(3x + 2y) = \cos(3x + 2y) \cdot 2 So, โˆ‚zโˆ‚y=2cosโก(3x+2y) \frac{\partial z}{\partial y} = 2\cos(3x + 2y)

Step 2: Second Partial Derivative with respect to y y

Now, take the derivative of โˆ‚zโˆ‚y \frac{\partial z}{\partial y} with respect to y y : โˆ‚2zโˆ‚y2=โˆ‚โˆ‚y(2cosโก(3x+2y))=2(โˆ’sinโก(3x+2y)โ‹…2)=โˆ’4sinโก(3x+2y) \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y}(2\cos(3x + 2y)) = 2(-\sin(3x + 2y) \cdot 2) = -4\sin(3x + 2y)

Step 3: First Partial Derivative with respect to x x

Using the chain rule: โˆ‚zโˆ‚x=cosโก(3x+2y)โ‹…โˆ‚โˆ‚x(3x+2y)=cosโก(3x+2y)โ‹…3 \frac{\partial z}{\partial x} = \cos(3x + 2y) \cdot \frac{\partial}{\partial x}(3x + 2y) = \cos(3x + 2y) \cdot 3 So, โˆ‚zโˆ‚x=3cosโก(3x+2y) \frac{\partial z}{\partial x} = 3\cos(3x + 2y)

Step 4: Second Partial Derivative with respect to x x

Now, take the derivative of โˆ‚zโˆ‚x \frac{\partial z}{\partial x} with respect to x x : โˆ‚2zโˆ‚x2=โˆ‚โˆ‚x(3cosโก(3x+2y))=3(โˆ’sinโก(3x+2y)โ‹…3)=โˆ’9sinโก(3x+2y) \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x}(3\cos(3x + 2y)) = 3(-\sin(3x + 2y) \cdot 3) = -9\sin(3x + 2y)

Step 5: Combine the derivatives into the expression

Now, substitute these back into the expression: 3โˆ‚2zโˆ‚y2โˆ’2โˆ‚2zโˆ‚x2=3(โˆ’4sinโก(3x+2y))โˆ’2(โˆ’9sinโก(3x+2y)) 3\frac{\partial^2 z}{\partial y^2} - 2\frac{\partial^2 z}{\partial x^2} = 3(-4\sin(3x + 2y)) - 2(-9\sin(3x + 2y)) This simplifies to: =โˆ’12sinโก(3x+2y)+18sinโก(3x+2y)=6sinโก(3x+2y) = -12\sin(3x + 2y) + 18\sin(3x + 2y) = 6\sin(3x + 2y)

4. Verify and Summarize

The calculations have been checked step-by-step, and the conclusion is consistent.

Final Answer

6sinโก(3x+2y) 6\sin(3x + 2y)

  • Correct option: (c) 6z 6z since z=sinโก(3x+2y) z = \sin(3x + 2y) .

This problem has been solved

Similar Questions

If ๐‘ฃ=๐‘“๐‘ฅ,๐‘ฆ, define ๐›ฟ๐‘ฃQuestion 1Answera.๐›ฟ๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘“โˆ‚๐‘ฆ๐›ฟ๐‘ฆb.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ๐›ฟ๐‘ฆc.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ๐›ฟ๐‘ฆd.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ

Give a two-column proof for the following:9. Given: 2๐‘ฅ โˆ’ 5(๐‘ฅ + 3) = 9 + ๐‘ฅProve: ๐‘ฅ = โˆ’610.Given: ๐‘šโˆ ๐ธ๐ต๐ถ = ๐‘šโˆ ๐ธ๐ถ๐ตProve: โˆ ๐ธ๐ต๐ด โ‰… โˆ ๐ธ๐ถ๐ท

A.๐‘“(๐‘ก)=2๐‘กโˆ’๐‘ก3f(t)=2 t โˆ’t 3 B.๐‘‘(๐‘ก)=(1.1)๐‘กd(t)=(1.1) t C.๐‘(๐‘ก)=๐‘ก4โˆ’3๐‘ก+9b(t)=t 4 โˆ’3t+9D.โ„Ž(๐‘ก)=5๐‘ก+๐‘ก5h(t)=5 t +t 5 E.๐‘(๐‘ก)=๐‘ก2โˆ’5๐‘กc(t)= t 2 โˆ’5tโ€‹

Compare the graphs of ๐‘“(๐‘ฅ)๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ)๐‘”(๐‘ฅ). Find the value of โ„Žโ„Ž and ๐‘˜๐‘˜.Enter your answers as integers: โ„Ž=โ„Ž=Answer 1 Question 9 and ๐‘˜=๐‘˜=Answer 2 Question 9

The range of ๐‘“(๐‘ฅ)=โˆฃ๐‘ฅโˆ’3โˆฃf(x)=โˆฃxโˆ’3โˆฃis:A.None of theseB.๐‘ฆโ‰ฅ3yโ‰ฅ3C.๐‘ฆ<3y<3D.๐‘ฆ>3y>3E.๐‘ฆโ‰ฅ0yโ‰ฅ0

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.