Knowee
Questions
Features
Study Tools

Soit E l’ensemble des applications f : [0, +∞[→ R continues telles que l’int´egrale∫ +∞0f (t)2e−tdtconverge.1. Montrer que E est un R-espace vectoriel.

Question

Soit E l’ensemble des applications f : [0, +∞[→ R continue telles que l’intégale 0+f(t)2etdt \int_0^{+\infty} f(t)^2 e^{-t} dt converge.

  1. Montrer que E est un R-espace vectoriel.
🧐 Not the exact question you are looking for?Go ask a question

Solution

To show that the set E E of continuous functions f:[0,+[R f : [0, +\infty[ \to \mathbb{R} for which the integral 0+f(t)2etdt \int_0^{+\infty} f(t)^2 e^{-t} dt converges is a vector space over R \mathbb{R} , we will follow these steps:

1. Break Down the Problem

We need to demonstrate that E E satisfies the properties of a vector space:

  1. It contains the zero vector (the zero function).
  2. It is closed under addition: If f1,f2E f_1, f_2 \in E , then f1+f2E f_1 + f_2 \in E .
  3. It is closed under scalar multiplication: If fE f \in E and cR c \in \mathbb{R} , then cfE c f \in E .

2. Relevant Concepts

  • Zero Function: The function f(t)=0 f(t) = 0 for all t t in [0,+[ [0, +\infty[ .
  • Convergence of Integrals: The integral 0+f(t)2etdt \int_0^{+\infty} f(t)^2 e^{-t} dt must be finite.

3. Analysis and Detail

  1. Zero Function:

    • Consider f(t)=0 f(t) = 0 . Then, 0+f(t)2etdt=0+02etdt=0 \int_0^{+\infty} f(t)^2 e^{-t} dt = \int_0^{+\infty} 0^2 e^{-t} dt = 0 This integral converges, thus 0E 0 \in E .
  2. Closure under Addition:

    • Let f1,f2E f_1, f_2 \in E . Then, 0+f1(t)2etdt<+and0+f2(t)2etdt<+ \int_0^{+\infty} f_1(t)^2 e^{-t} dt < +\infty \quad \text{and} \quad \int_0^{+\infty} f_2(t)^2 e^{-t} dt < +\infty We need to show that: 0+(f1(t)+f2(t))2etdt<+ \int_0^{+\infty} (f_1(t) + f_2(t))^2 e^{-t} dt < +\infty By the Cauchy-Schwarz inequality: (f1(t)+f2(t))22(f1(t)2+f2(t)2) (f_1(t) + f_2(t))^2 \leq 2(f_1(t)^2 + f_2(t)^2) Therefore, 0+(f1(t)+f2(t))2etdt2(0+f1(t)2etdt+0+f2(t)2etdt)<+ \int_0^{+\infty} (f_1(t) + f_2(t))^2 e^{-t} dt \leq 2 \left( \int_0^{+\infty} f_1(t)^2 e^{-t} dt + \int_0^{+\infty} f_2(t)^2 e^{-t} dt \right) < +\infty Hence, f1+f2E f_1 + f_2 \in E .
  3. Closure under Scalar Multiplication:

    • Let fE f \in E and cR c \in \mathbb{R} . Then, 0+(cf(t))2etdt=c20+f(t)2etdt \int_0^{+\infty} (c f(t))^2 e^{-t} dt = c^2 \int_0^{+\infty} f(t)^2 e^{-t} dt Since 0+f(t)2etdt<+ \int_0^{+\infty} f(t)^2 e^{-t} dt < +\infty , it follows that c20+f(t)2etdt<+ c^2 \int_0^{+\infty} f(t)^2 e^{-t} dt < +\infty . Thus, cfE c f \in E .

4. Verify and Summarize

We have verified that:

  • The zero function is in E E .
  • E E is closed under addition.
  • E E is closed under scalar multiplication.

Final Answer

Therefore, E E is a vector space over R \mathbb{R} .

This problem has been solved

Similar Questions

Soit E l’ensemble des applications f : [0, +∞[→ R continues telles que l’int´egrale∫ +∞0f (t)2e−tdtconverge.1. Montrer que E est un R-espace vectoriel.

Suppose that 0 < 1 + r ≤ d < u. Create a portfolio X0, ∆0 such that: X0 ≤ 0 and X1 ≥ 0 Not all of X0, X1(H), and X1(T ) are equal to zero.

2. Fie functiile f, g : R −→ R, definite prin f (x) = x − 2, g(x) = 2 − x, ∀x ∈ R(a) Sa se calculeze (f ◦ g)(1)(b) Sa se calculeze sum100∑k=1( (f ◦ g)(k) )2

Let F––(t)=t2i–+tj–+k––𝐹_(𝑡)=𝑡2𝑖_+𝑡𝑗_+𝑘_ and G––(t)=i–+tj–+t2k––𝐺_(𝑡)=𝑖_+𝑡𝑗_+𝑡2𝑘_ be two vector functions defined for each t∈R𝑡∈𝑅.

Find the Fourier transform off (t) ={ 1, |t| < 1;0, |t| > 1.Hence evaluate the integral ∫ ∞0 sin tt dt

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.