Knowee
Questions
Features
Study Tools

For z=x+iy๐‘ง=๐‘ฅ+๐‘–๐‘ฆ find the values x๐‘ฅ and y๐‘ฆ satisfyingย 2z1+iโˆ’2zi=52+i2๐‘ง1+๐‘–โˆ’2๐‘ง๐‘–=52+๐‘–.

Question

For z=x+iy find the values x and y satisfying

2z1+iโˆ’2zi=52+i 2z \frac{1+i}{-2zi} = \frac{5}{2+i}
2z1+iโˆ’2z=52+i 2z \frac{1+i}{-2z} = \frac{5}{2+i}

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to solve the equation: 2z1+iโˆ’2zi52+i2z=1 2z \frac{1+i-2zi}{52+i2z} = 1 where z=x+iy z = x + iy . This requires simplifying both sides and isolating the variables x x and y y .

2. Relevant Concepts

  1. Substitute z=x+iy z = x + iy .
  2. Use properties of complex numbers to simplify the equation.
  3. Set the real and imaginary parts equal to isolate the variables.

3. Analysis and Detail

Step 1: Substitute z z

Substituting z=x+iy z = x + iy into the equation:

2(x+iy)1+iโˆ’2i(x+iy)52+i2(x+iy)=1 2(x + iy) \frac{1+i-2i(x+iy)}{52+i2(x+iy)} = 1

This simplifies to:

Step 2: Simplifying the numerator

1+iโˆ’2i(x+iy)=1+iโˆ’2ix+2y=(1+2y)+i(1โˆ’2x) 1 + i - 2i(x + iy) = 1 + i - 2ix + 2y = (1 + 2y) + i(1 - 2x)

So, the numerator becomes: 2(x+iy)((1+2y)+i(1โˆ’2x)) 2(x + iy) \left( (1 + 2y) + i(1 - 2x) \right)

This gives: 2x(1+2y)+2iy(1+2y)+2i(1โˆ’2x)+2y(1โˆ’2x) 2x(1 + 2y) + 2iy(1 + 2y) + 2i(1 - 2x) + 2y(1 - 2x)

Step 3: Simplifying the denominator

For the denominator: 52+i2(x+iy)=52+2ixโˆ’2y 52 + i2(x + iy) = 52 + 2ix - 2y So, it becomes: 52+2ixโˆ’2y 52 + 2ix - 2y

Step 4: Set up the equation

Now, rewrite the equation in simpler form: 2x(1+2y)+2i(1โˆ’2x)52โˆ’2y+2ix=1 \frac{2x(1 + 2y) + 2i(1 - 2x)}{52 - 2y + 2ix} = 1

Step 5: Cross-multiply

Cross-multiplying gives: 2x(1+2y)+2i(1โˆ’2x)=52โˆ’2y+2ix 2x(1 + 2y) + 2i(1 - 2x) = 52 - 2y + 2ix

Step 6: Equate real and imaginary parts

We can now separate real and imaginary components:

  1. Real part: 2x(1+2y)=52โˆ’2y 2x(1 + 2y) = 52 - 2y
  2. Imaginary part: 2(1โˆ’2x)=2x 2(1 - 2x) = 2x

4. Verify and Summarize

Solving the imaginary part: 2โˆ’4x=2xโ€…โ€ŠโŸนโ€…โ€Š2=6xโ€…โ€ŠโŸนโ€…โ€Šx=13 2 - 4x = 2x \implies 2 = 6x \implies x = \frac{1}{3}

Now substitute x=13 x = \frac{1}{3} back into the real part: 2โ‹…13(1+2y)=52โˆ’2y 2 \cdot \frac{1}{3}(1 + 2y) = 52 - 2y This simplifies to: 23(1+2y)=52โˆ’2y \frac{2}{3}(1 + 2y) = 52 - 2y Multiply through by 3: 2(1+2y)=156โˆ’6yโ€…โ€ŠโŸนโ€…โ€Š2+4y=156โˆ’6y 2(1 + 2y) = 156 - 6y \implies 2 + 4y = 156 - 6y Combine terms: 10y=154โ€…โ€ŠโŸนโ€…โ€Šy=15410=15.4 10y = 154 \implies y = \frac{154}{10} = 15.4

Final Answer

Thus, the values of x x and y y that satisfy the equation are: x=13,y=15.4 x = \frac{1}{3}, \quad y = 15.4

This problem has been solved

Similar Questions

For z=x+iy๐‘ง=๐‘ฅ+๐‘–๐‘ฆ find the values x๐‘ฅ and y๐‘ฆ satisfyingย 2z1+iโˆ’2zi=52+i2๐‘ง1+๐‘–โˆ’2๐‘ง๐‘–=52+๐‘–.

Find the z-score for the value 52, when the mean is 58 and the standard deviation is 9.Group of answer choicesz=-0.78z=-0.74z=0.74z=-0.67

Typingย ย  z=2+5i and then conj(z)ย ย ย  in MATLAB command line will output :Group of answer choices5+2i252-5i

๐‘†๐‘ข๐‘๐‘๐‘œ๐‘ ๐‘’ย ๐‘กโ„Ž๐‘Ž๐‘กย ๐‘กโ„Ž๐‘’ย ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘’๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘ย ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ย ๐‘œ๐‘“ย ๐‘ ๐‘œ๐‘š๐‘’ย ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅย ๐ดย ๐‘–๐‘ ย ๐‘“๐‘œ๐‘ข๐‘›๐‘‘ย ๐‘ก๐‘œย ๐‘๐‘’ย ๐‘(๐œ†)ย =ย (๐œ†ย -ย 1)๐œ†ย -32ย ย ๐œ†ย -43ย ย .ย ๐‘Šโ„Ž๐‘Ž๐‘กย ๐‘–๐‘ ย ๐‘กโ„Ž๐‘’ย ๐‘ ๐‘–๐‘ง๐‘’ย ๐‘œ๐‘“ย ๐ด?

For the equation ๐‘=2๐‘คโˆ’5, complete the table of values below.๐‘ค2345๐‘ Submit answer

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.