Knowee
Questions
Features
Study Tools

If ๐‘ข = ๐‘ฅ2 tanโˆ’1 ๐‘ฆ๐‘ฅ โˆ’ ๐‘ฆ2 tanโˆ’1 ๐‘ฅ๐‘ฆ show that ๐œ•2๐‘ข๐œ•๐‘ฅ๐œ•๐‘ฆ = ๐‘ฅ2โˆ’๐‘ฆ2๐‘ฅ2+๐‘ฆ2 and ๐œ•2๐‘ข๐œ•๐‘ฅ๐œ•๐‘ฆ = ๐œ•2๐‘ข๐œ•๐‘ฆ๐œ•๐‘ฅ.

Question

If u=x2tanโกโˆ’1(yx)โˆ’y2tanโกโˆ’1(xy) u = x^2 \tan^{-1}(yx) - y^2 \tan^{-1}(xy) show that โˆ‚2uโˆ‚xโˆ‚y=x2โˆ’y2x2+y2 \frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2} and ( \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}. \

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

To solve this problem, we need to use the rules of differentiation.

First, let's find the first order partial derivatives of u with respect to x and y.

๐œ•๐‘ข/๐œ•๐‘ฅ = 2x tan^(-1)(y/x) - y/(1+(y/x)^2) - 2y tan^(-1)(x/y) + x/(1+(x/y)^2)

๐œ•๐‘ข/๐œ•๐‘ฆ = x^2/(1+(y/x)^2) - 2y tan^(-1)(x/y) - x/(1+(x/y)^2) + 2x tan^(-1)(y/x)

Now, let's find the second order partial derivatives.

๐œ•^2๐‘ข/๐œ•๐‘ฅ๐œ•๐‘ฆ = ๐œ•/๐œ•๐‘ฆ [2x tan^(-1)(y/x) - y/(1+(y/x)^2) - 2y tan^(-1)(x/y) + x/(1+(x/y)^2)]

After simplifying, we get ๐œ•^2๐‘ข/๐œ•๐‘ฅ๐œ•๐‘ฆ = (x^2 - y^2) / (x^2 + y^2)

Similarly,

๐œ•^2๐‘ข/๐œ•๐‘ฆ๐œ•๐‘ฅ = ๐œ•/๐œ•๐‘ฅ [x^2/(1+(y/x)^2) - 2y tan^(-1)(x/y) - x/(1+(x/y)^2) + 2x tan^(-1)(y/x)]

After simplifying, we get ๐œ•^2๐‘ข/๐œ•๐‘ฆ๐œ•๐‘ฅ = (x^2 - y^2) / (x^2 + y^2)

Therefore, ๐œ•^2๐‘ข/๐œ•๐‘ฅ๐œ•๐‘ฆ = ๐œ•^2๐‘ข/๐œ•๐‘ฆ๐œ•๐‘ฅ = (x^2 - y^2) / (x^2 + y^2) as required.

This problem has been solved

Similar Questions

What values of ๐‘ฅx and ๐‘ฆy make both of these equations true?ย 2๐‘ฆ2y==๐‘ฅ+6x+6๐‘ฆโˆ’3๐‘ฅyโˆ’3x==33

If ๐‘Ž + ๐‘ + ๐‘ = 5 ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘ + ๐‘๐‘ + ๐‘๐‘Ž = 10, then prove that ๐‘Ž3 + ๐‘3 + ๐‘3 โˆ’ 3๐‘Ž๐‘๐‘ = โˆ’25.**************************

If ๐‘ฃ = ๐‘Ÿ๐‘š, where ๐‘Ÿ2 = ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2, then prove that ๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘ฆ + ๐‘ฃ๐‘ง๐‘ง = ๐‘š(๐‘š + 1)๐‘Ÿ๐‘šโˆ’2.

Suppose that ๏ปฟ๐‘Ž+1๐‘a+ b1โ€‹ ๏ปฟ and ๏ปฟ๐‘+1๐‘Žb+ a1โ€‹ ๏ปฟ are the roots of the equation ๏ปฟ๐‘ฅ2โˆ’๐‘๐‘ฅ+๐‘ž=0x 2 โˆ’px+q=0๏ปฟ. If ๏ปฟ๐‘Ž๐‘=1ab=1๏ปฟ, what is the value of ๏ปฟ๐‘žq๏ปฟ?

Give a two-column proof for the following:9. Given: 2๐‘ฅ โˆ’ 5(๐‘ฅ + 3) = 9 + ๐‘ฅProve: ๐‘ฅ = โˆ’610.Given: ๐‘šโˆ ๐ธ๐ต๐ถ = ๐‘šโˆ ๐ธ๐ถ๐ตProve: โˆ ๐ธ๐ต๐ด โ‰… โˆ ๐ธ๐ถ๐ท

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.