If ๐ข = ๐ฅ2 tanโ1 ๐ฆ๐ฅ โ ๐ฆ2 tanโ1 ๐ฅ๐ฆ show that ๐2๐ข๐๐ฅ๐๐ฆ = ๐ฅ2โ๐ฆ2๐ฅ2+๐ฆ2 and ๐2๐ข๐๐ฅ๐๐ฆ = ๐2๐ข๐๐ฆ๐๐ฅ.
Question
If show that and ( \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}. \
Solution
To solve this problem, we need to use the rules of differentiation.
First, let's find the first order partial derivatives of u with respect to x and y.
๐๐ข/๐๐ฅ = 2x tan^(-1)(y/x) - y/(1+(y/x)^2) - 2y tan^(-1)(x/y) + x/(1+(x/y)^2)
๐๐ข/๐๐ฆ = x^2/(1+(y/x)^2) - 2y tan^(-1)(x/y) - x/(1+(x/y)^2) + 2x tan^(-1)(y/x)
Now, let's find the second order partial derivatives.
๐^2๐ข/๐๐ฅ๐๐ฆ = ๐/๐๐ฆ [2x tan^(-1)(y/x) - y/(1+(y/x)^2) - 2y tan^(-1)(x/y) + x/(1+(x/y)^2)]
After simplifying, we get ๐^2๐ข/๐๐ฅ๐๐ฆ = (x^2 - y^2) / (x^2 + y^2)
Similarly,
๐^2๐ข/๐๐ฆ๐๐ฅ = ๐/๐๐ฅ [x^2/(1+(y/x)^2) - 2y tan^(-1)(x/y) - x/(1+(x/y)^2) + 2x tan^(-1)(y/x)]
After simplifying, we get ๐^2๐ข/๐๐ฆ๐๐ฅ = (x^2 - y^2) / (x^2 + y^2)
Therefore, ๐^2๐ข/๐๐ฅ๐๐ฆ = ๐^2๐ข/๐๐ฆ๐๐ฅ = (x^2 - y^2) / (x^2 + y^2) as required.
Similar Questions
What values of ๐ฅx and ๐ฆy make both of these equations true?ย 2๐ฆ2y==๐ฅ+6x+6๐ฆโ3๐ฅyโ3x==33
If ๐ + ๐ + ๐ = 5 ๐๐๐ ๐๐ + ๐๐ + ๐๐ = 10, then prove that ๐3 + ๐3 + ๐3 โ 3๐๐๐ = โ25.**************************
If ๐ฃ = ๐๐, where ๐2 = ๐ฅ2 + ๐ฆ2 + ๐ง2, then prove that ๐ฃ๐ฅ๐ฅ + ๐ฃ๐ฆ๐ฆ + ๐ฃ๐ง๐ง = ๐(๐ + 1)๐๐โ2.
Suppose that ๏ปฟ๐+1๐a+ b1โ ๏ปฟ and ๏ปฟ๐+1๐b+ a1โ ๏ปฟ are the roots of the equation ๏ปฟ๐ฅ2โ๐๐ฅ+๐=0x 2 โpx+q=0๏ปฟ. If ๏ปฟ๐๐=1ab=1๏ปฟ, what is the value of ๏ปฟ๐q๏ปฟ?
Give a two-column proof for the following:9. Given: 2๐ฅ โ 5(๐ฅ + 3) = 9 + ๐ฅProve: ๐ฅ = โ610.Given: ๐โ ๐ธ๐ต๐ถ = ๐โ ๐ธ๐ถ๐ตProve: โ ๐ธ๐ต๐ด โ โ ๐ธ๐ถ๐ท
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.