Knowee
Questions
Features
Study Tools

If ๐‘ฃ = ๐‘Ÿ๐‘š, where ๐‘Ÿ2 = ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2, then prove that ๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘ฆ + ๐‘ฃ๐‘ง๐‘ง = ๐‘š(๐‘š + 1)๐‘Ÿ๐‘šโˆ’2.

Question

If ๐‘ฃ = ๐‘Ÿ^๐‘š, where ๐‘Ÿ^2 = ๐‘ฅ^2 + ๐‘ฆ^2 + ๐‘ง^2, then prove that

๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘ฆ + ๐‘ฃ๐‘ง๐‘ง = ๐‘š(๐‘š + 1)๐‘Ÿ^{๐‘šโˆ’2}.

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to prove that: vxx+vyy+vzz=m(m+1)rmโˆ’2 v_{xx} + v_{yy} + v_{zz} = m(m + 1) r^{m - 2} where v=rm v = r^m and r2=x2+y2+z2 r^2 = x^2 + y^2 + z^2 .

2. Relevant Concepts

  1. Partial Derivatives: We will need to compute the second partial derivatives vxx v_{xx} , vyy v_{yy} , and vzz v_{zz} .
  2. Chain Rule: Since v v is expressed in terms of r r , we will use the chain rule for differentiation.

3. Analysis and Detail

  1. Calculate v v and its first derivatives: v=rm=(x2+y2+z2)m/2 v = r^m = (x^2 + y^2 + z^2)^{m/2} Now compute the first partial derivatives using the chain rule: vx=โˆ‚vโˆ‚x=mrmโˆ’2x v_x = \frac{\partial v}{\partial x} = m r^{m - 2} x vy=โˆ‚vโˆ‚y=mrmโˆ’2y v_y = \frac{\partial v}{\partial y} = m r^{m - 2} y vz=โˆ‚vโˆ‚z=mrmโˆ’2z v_z = \frac{\partial v}{\partial z} = m r^{m - 2} z

  2. Calculate the second partial derivatives: Using the product and chain rule: vxx=โˆ‚โˆ‚x(mrmโˆ’2x)=m((mโˆ’2)rmโˆ’4x2+rmโˆ’2) v_{xx} = \frac{\partial}{\partial x}\left(m r^{m - 2} x\right) = m \left( (m - 2) r^{m - 4} x^2 + r^{m - 2} \right) vyy=โˆ‚โˆ‚y(mrmโˆ’2y)=m((mโˆ’2)rmโˆ’4y2+rmโˆ’2) v_{yy} = \frac{\partial}{\partial y}\left(m r^{m - 2} y\right) = m \left( (m - 2) r^{m - 4} y^2 + r^{m - 2} \right) vzz=โˆ‚โˆ‚z(mrmโˆ’2z)=m((mโˆ’2)rmโˆ’4z2+rmโˆ’2) v_{zz} = \frac{\partial}{\partial z}\left(m r^{m - 2} z\right) = m \left( (m - 2) r^{m - 4} z^2 + r^{m - 2} \right)

  3. Add the second derivatives: vxx+vyy+vzz=m((mโˆ’2)rmโˆ’4(x2+y2+z2)+3rmโˆ’2) v_{xx} + v_{yy} + v_{zz} = m\left( (m - 2) r^{m - 4} (x^2 + y^2 + z^2) + 3r^{m - 2} \right) Since r2=x2+y2+z2 r^2 = x^2 + y^2 + z^2 : vxx+vyy+vzz=m((mโˆ’2)rmโˆ’4r2+3rmโˆ’2) v_{xx} + v_{yy} + v_{zz} = m\left( (m - 2) r^{m - 4} r^2 + 3r^{m - 2} \right) Simplifying: =m((mโˆ’2)rmโˆ’2+3rmโˆ’2)=m(m+1)rmโˆ’2 = m\left( (m - 2) r^{m - 2} + 3r^{m - 2} \right) = m\left( m + 1 \right) r^{m - 2}

4. Verify and Summarize

We have computed vxx+vyy+vzz v_{xx} + v_{yy} + v_{zz} and shown that: vxx+vyy+vzz=m(m+1)rmโˆ’2 v_{xx} + v_{yy} + v_{zz} = m(m + 1) r^{m - 2} This completes the proof.

Final Answer

vxx+vyy+vzz=m(m+1)rmโˆ’2 v_{xx} + v_{yy} + v_{zz} = m(m + 1) r^{m - 2}

This problem has been solved

Similar Questions

If ๐‘ฃ = ๐‘Ÿ๐‘š, where ๐‘Ÿ2 = ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2, then prove that ๐‘ฃ๐‘ฅ๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘ฆ + ๐‘ฃ๐‘ง๐‘ง = ๐‘š(๐‘š + 1)๐‘Ÿ๐‘šโˆ’2.

Let ๐‘“: โ„• โŸถ โ„• by defined by ๐‘“(๐‘ฅ) - 2๐‘ฅ for all ๐‘ฅ โˆˆ โ„• where โ„• is the set of natural numbers. Showthat ๐‘“ is one - one but not onto function.

Suppose that ๏ปฟ๐‘Ž+1๐‘a+ b1โ€‹ ๏ปฟ and ๏ปฟ๐‘+1๐‘Žb+ a1โ€‹ ๏ปฟ are the roots of the equation ๏ปฟ๐‘ฅ2โˆ’๐‘๐‘ฅ+๐‘ž=0x 2 โˆ’px+q=0๏ปฟ. If ๏ปฟ๐‘Ž๐‘=1ab=1๏ปฟ, what is the value of ๏ปฟ๐‘žq๏ปฟ?

Give a two-column proof for the following:9. Given: 2๐‘ฅ โˆ’ 5(๐‘ฅ + 3) = 9 + ๐‘ฅProve: ๐‘ฅ = โˆ’610.Given: ๐‘šโˆ ๐ธ๐ต๐ถ = ๐‘šโˆ ๐ธ๐ถ๐ตProve: โˆ ๐ธ๐ต๐ด โ‰… โˆ ๐ธ๐ถ๐ท

If ๐‘ฃ=๐‘“๐‘ฅ,๐‘ฆ, define ๐›ฟ๐‘ฃQuestion 1Answera.๐›ฟ๐‘ฃ=โˆ‚๐‘“โˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘“โˆ‚๐‘ฆ๐›ฟ๐‘ฆb.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃ๐›ฟ๐‘ฆc.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ๐›ฟ๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ๐›ฟ๐‘ฆd.๐›ฟ๐‘ฃ=โˆ‚๐‘ฃโˆ‚๐‘ฅ+โˆ‚๐‘ฃโˆ‚๐‘ฆ

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.