Given that Ax3 + Bx2 + x + 6 is exactly divisible by (x + 1)(x – 2), find the value of Aand the value of B
Question
Given that is exactly divisible by , find the value of A and the value of B.
Solution
Sure, here is the step by step solution:
-
Given that the polynomial Ax^3 + Bx^2 + x + 6 is exactly divisible by (x + 1)(x – 2), it means that if we substitute x = -1 and x = 2 into the polynomial, it should equal to zero.
-
Substituting x = -1 into the polynomial, we get: A(-1)^3 + B(-1)^2 - 1 + 6 = 0 -A + B - 1 + 6 = 0 -A + B + 5 = 0 A = B + 5 ---- (Equation 1)
-
Substituting x = 2 into the polynomial, we get: A(2)^3 + B(2)^2 + 2 + 6 = 0 8A + 4B + 8 = 0 8A + 4B = -8 2A + B = -2 ---- (Equation 2)
-
Now we have two equations (Equation 1 and Equation 2) and two unknowns (A and B). We can solve these equations simultaneously to find the values of A and B.
-
Substituting Equation 1 into Equation 2, we get: 2(B + 5) + B = -2 2B + 10 + B = -2 3B = -12 B = -4
-
Substituting B = -4 into Equation 1, we get: A = -4 + 5 A = 1
So, the values of A and B are 1 and -4 respectively.
Similar Questions
Given that Ax3 + Bx2 + x + 6 is exactly divisible by (x + 1)(x – 2), find the value of Aand the value of B
Given that the remainder when f(x) = x3 − 2x2 − ax + b is divided by x − 1is 96 and that x − 4 is a factor, determine the values of a and b.
If f(x) = x3 + x2 − ax + b is divisible by x2 − x , then the value of a + b = Select an answerA–2B0C2D6
If 4x2 - 6x - m is divisible by x - 3, the value of m is exact divisor ofa.9b.45c.20d.36
When x³+ax²+4 is divided by x+1, the remainder is 6 greater than the remainder when it is divided by x-2, the value of a is
Upgrade your grade with Knowee
Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.