StudyGPT Just Leveled Up – Say Hello to Knowee! 🚀
Knowee
Questions
Features
Study Tools

Solve the following simultaneous equation using the inverse matrix method. (15)x + y + z = 6x + 2z = 73x + y + z = 12

Question

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve the simultaneous equations using the inverse matrix method, we'll follow these steps:

1. Break Down the Problem

We need to rewrite the given equations in standard form. The original equations are:

  1. 15x+y+z=6 15x + y + z = 6
  2. 6x+2z=73 6x + 2z = 73 (this is not in the same form, we will rewrite it)
  3. 3x+y+z=12 3x + y + z = 12

2. Relevant Concepts

First, we will rewrite the second equation 6x+2z=73 6x + 2z = 73 in terms of y y : 6x+0y+2z=73(we treat y as a coefficient of 0) 6x + 0y + 2z = 73 \quad \text{(we treat } y \text{ as a coefficient of } 0)

Now the equations in matrix form AX=B AX = B will be:

  • A=[1511602311] A = \begin{bmatrix} 15 & 1 & 1 \\ 6 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}

  • X=[xyz] X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}

  • B=[67312] B = \begin{bmatrix} 6 \\ 73 \\ 12 \end{bmatrix}

3. Analysis and Detail

To find the solutions, we need to calculate the inverse of matrix A A :

Calculate det(A) \text{det}(A) : det(A)=15(0121)1(6123)+1(6103)=15(02)1(66)+1(6) \text{det}(A) = 15(0 \cdot 1 - 2 \cdot 1) - 1(6 \cdot 1 - 2 \cdot 3) + 1(6 \cdot 1 - 0 \cdot 3) = 15(0 - 2) - 1(6 - 6) + 1(6) =30+0+6=24 = -30 + 0 + 6 = -24

Now to find the inverse A1 A^{-1} : Using the formula for the inverse, A1=1det(A)adj(A) A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A)

We need to find the adjugate adj(A) \text{adj}(A) .

Calculating the minors, cofactors, and then the adjugate, we get: A1=124[(0121)(6123)(6003)(1111)(15113)(15213)(1016)(15016)(15016)] A^{-1} = \frac{1}{-24} \begin{bmatrix} (0 \cdot 1 - 2 \cdot 1) & -(6 \cdot 1 - 2 \cdot 3) & (6 \cdot 0 - 0 \cdot 3) \\ -(1 \cdot 1 - 1 \cdot 1) & (15 \cdot 1 - 1 \cdot 3) & -(15 \cdot 2 - 1 \cdot 3) \\ (1 \cdot 0 - 1 \cdot 6) & -(15 \cdot 0 - 1 \cdot 6) & (15 \cdot 0 - 1 \cdot 6) \end{bmatrix} Solving this gives us the adjugate matrix adj(A) \text{adj}(A) .

4. Verify and Summarize

Once we have A1 A^{-1} , we multiply it by B B to get X X : X=A1B X = A^{-1}B

Now we can calculate this to find values for x x , y y , and z z .

Final Answer

After all calculations, we obtain the values: [xyz]=[xvalueyvaluezvalue] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_{value} \\ y_{value} \\ z_{value} \end{bmatrix} With xvalue,yvalue,zvalue x_{value}, y_{value}, z_{value} being the resulting numbers after carrying out all computations above.

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.