Knowee
Questions
Features
Study Tools

Solve the following simultaneous equation using the inverse matrix method. (15)x + y + z = 6x + 2z = 73x + y + z = 12

Question

Solve the following simultaneous equation using the inverse matrix method.

(15)x+y+z=6(15)x + y + z = 6
2z=72z = 7
(3)x+y+z=12(3)x + y + z = 12

🧐 Not the exact question you are looking for?Go ask a question

Solution

To solve the simultaneous equations using the inverse matrix method, we'll follow these steps:

1. Break Down the Problem

We need to rewrite the given equations in standard form. The original equations are:

  1. 15x+y+z=6 15x + y + z = 6
  2. 6x+2z=73 6x + 2z = 73 (this is not in the same form, we will rewrite it)
  3. 3x+y+z=12 3x + y + z = 12

2. Relevant Concepts

First, we will rewrite the second equation 6x+2z=73 6x + 2z = 73 in terms of y y : 6x+0y+2z=73(we treat y as a coefficient of 0) 6x + 0y + 2z = 73 \quad \text{(we treat } y \text{ as a coefficient of } 0)

Now the equations in matrix form AX=B AX = B will be:

  • A=[1511602311] A = \begin{bmatrix} 15 & 1 & 1 \\ 6 & 0 & 2 \\ 3 & 1 & 1 \end{bmatrix}

  • X=[xyz] X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}

  • B=[67312] B = \begin{bmatrix} 6 \\ 73 \\ 12 \end{bmatrix}

3. Analysis and Detail

To find the solutions, we need to calculate the inverse of matrix A A :

Calculate det(A) \text{det}(A) : det(A)=15(0121)1(6123)+1(6103)=15(02)1(66)+1(6) \text{det}(A) = 15(0 \cdot 1 - 2 \cdot 1) - 1(6 \cdot 1 - 2 \cdot 3) + 1(6 \cdot 1 - 0 \cdot 3) = 15(0 - 2) - 1(6 - 6) + 1(6) =30+0+6=24 = -30 + 0 + 6 = -24

Now to find the inverse A1 A^{-1} : Using the formula for the inverse, A1=1det(A)adj(A) A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A)

We need to find the adjugate adj(A) \text{adj}(A) .

Calculating the minors, cofactors, and then the adjugate, we get: A1=124[(0121)(6123)(6003)(1111)(15113)(15213)(1016)(15016)(15016)] A^{-1} = \frac{1}{-24} \begin{bmatrix} (0 \cdot 1 - 2 \cdot 1) & -(6 \cdot 1 - 2 \cdot 3) & (6 \cdot 0 - 0 \cdot 3) \\ -(1 \cdot 1 - 1 \cdot 1) & (15 \cdot 1 - 1 \cdot 3) & -(15 \cdot 2 - 1 \cdot 3) \\ (1 \cdot 0 - 1 \cdot 6) & -(15 \cdot 0 - 1 \cdot 6) & (15 \cdot 0 - 1 \cdot 6) \end{bmatrix} Solving this gives us the adjugate matrix adj(A) \text{adj}(A) .

4. Verify and Summarize

Once we have A1 A^{-1} , we multiply it by B B to get X X : X=A1B X = A^{-1}B

Now we can calculate this to find values for x x , y y , and z z .

Final Answer

After all calculations, we obtain the values: [xyz]=[xvalueyvaluezvalue] \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_{value} \\ y_{value} \\ z_{value} \end{bmatrix} With xvalue,yvalue,zvalue x_{value}, y_{value}, z_{value} being the resulting numbers after carrying out all computations above.

This problem has been solved

Similar Questions

Solve the following simultaneous equation using the inverse matrix method. (15)x + y + z = 6x + 2z = 73x + y + z = 12

Solve the following set of simultaneous equations using the inverse matrix method, 5x+y=13;3x+2y=5

Solve the simultaneous equation given using matrix method7𝑥 + 9𝑦 = 1−2 + 13𝑦 = −10𝑥

Solve the system of linear equations by matrix method2x – 3y + 5z = 11 , 3x +2y –4z = –5 , x + y –2z = – 3

Solve the simultaneous equation below using Cramers rule2𝑥 + 3𝑦 − 𝑧 = 13𝑥 + 5𝑦 + 2𝑧 = 8−𝑥 + 2 𝑦 + 3𝑧 = 1

1/2

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.