StudyGPT Just Leveled Up – Say Hello to Knowee! 🚀
Knowee
Questions
Features
Study Tools

T(n)=n+4n2+8+16n4+32+⋯+Θ(nlg4)=lg(n−1)∑i=0 2in+2lg(n−1)∑i=0 4i+Θ(n2)=2lgn−12−1n+2⋅4lgn−14−1+Θ(n2)=(2lgn−1)n+23(4lgn−1)+Θ(n2)=(n−1)n+23(n2−1)+Θ(n2)=Θ(n2)

Question

T(n)=n+4n²+8+16n⁴+32+⋯+Θ(nlg4)=lg(n−1)∑ᵢ=0 2ⁱn+2lg(n−1)∑ᵢ=0 4ⁱ+Θ(n²)=2lg(n)−12⁻¹n+2⋅4lg(n)−14⁻¹+Θ(n²)=(2lg(n)−1)n+23(4lg(n)−1)+Θ(n²)=(n−1)n+23(n²−1)+Θ(n²)=Θ(n²)

🧐 Not the exact question you are looking for?Go ask a question

Solution

Break Down the Problem

  1. Identify the expression for T(n) T(n) .
  2. Analyze the individual components of the expression.
  3. Combine the terms to simplify T(n) T(n) .

Relevant Concepts

  1. Big Theta notation Θ \Theta indicates asymptotic tight bounds.
  2. Summations and logarithmic identities will be used for simplification.
  3. The behavior of polynomial and logarithmic terms as n n grows.

Analysis and Detail

  1. The given expression is: T(n)=n+4n2+8+16n4+32++Θ(nlog4)=log(n1)i=022in+2log(n1)i=044i+Θ(n2) T(n) = n + 4n^2 + 8 + 16n^4 + 32 + \ldots + \Theta(n \log 4) = \log(n-1) \sum_{i=0}^{2} 2^i n + 2 \log(n-1) \sum_{i=0}^{4} 4^i + \Theta(n^2)

  2. Simplify the summations:

    • The first summation: i=022i=20+21+22=1+2+4=7 \sum_{i=0}^{2} 2^i = 2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7 Therefore, log(n1)i=022in=7log(n1)n \log(n-1) \sum_{i=0}^{2} 2^i n = 7 \log(n-1) n

    • The second summation: i=044i=40+41+42+43+44=1+4+16+64+256=341 \sum_{i=0}^{4} 4^i = 4^0 + 4^1 + 4^2 + 4^3 + 4^4 = 1 + 4 + 16 + 64 + 256 = 341 Therefore, 2log(n1)i=044i=682log(n1) 2 \log(n-1) \sum_{i=0}^{4} 4^i = 682 \log(n-1)

  3. Combining terms together: T(n)=7log(n1)n+682log(n1)+Θ(n2) T(n) = 7 \log(n-1) n + 682 \log(n-1) + \Theta(n^2)

Verify and Summarize

  1. Through simplification and collecting the terms, we observe that as n n increases:
    • The leading term comes from Θ(n2) \Theta(n^2) .
    • Thus, T(n)=Θ(n2) T(n) = \Theta(n^2) dominates the logarithmic terms.

Final Answer

T(n)=Θ(n2) T(n) = \Theta(n^2)

This problem has been solved

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.